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Real world case study on optimizing an already mature, fully GPU-resident algorithm to 
achieve high performance on today’s ever-growing GPU cards
• Strategies considered and choices made
• High-quality, maintainable software

Contents
• Domain overview - Molecular Dynamics (MD), Free Energy Perturbation (FEP)
• Applying CUDA Graphs
• De-risking stream-recorded CUDA graphs
• Coroutines for additional in-process parallelism
• Kernel optimizations - shared memory
• Future strategies

Structure of This Talk
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Molecular Dynamics and 
Desmond Overview
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A classical physics representation of chemistry
• Uses a ‘forcefield’ is to approximate the true quantum interactions
• System is described by the position and momenta of atoms (or more generic particles) 

that comprise that system
• Simulates the time evolution of the system according to Newton’s equations of motion, 

producing a trajectory of all the particles
MD simulations sample states from the Boltzmann distribution
• This property allows us to calculate statistical averages, which are often of more interest 

than the specific trajectory

Molecular Dynamics Overview

The Boltzmann factor/weight

The partition function, or 
“sum over states”
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Molecular Dynamics Overview

The forcefield is used to calculate the total potential energy of each atom:

The gradient of the potential energy with respect to position gives the force acting 
on each atom
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Molecular Dynamics Overview

Calculate forces Update positions 
and velocities

For a very small “time-step”

Thermodynamic parameters 
e.g temperature and pressure 

Starting structure Final structure

Initialize
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• ‘Desmond’ is Schrodinger’s Molecular Dynamics Engine
– Originally developed by DE Shaw Research
– Schrodinger now provides commercial licenses and maintains a very active fork

• A high-performance MD Engine
– Purpose built GPU port was introduced in 2014
– Scalability, throughput, and scientific accuracy
– GPU resident, no need to move data to CPU except for file output

• Impact
– Schrodinger averages around 8,000-10,000 GPUs in use at all times
– Desmond, and its main application FEP+, is the primary solution in use by essentially 

all major pharmaceutical companies for computational binding affinity prediction
• Binding affinity is the holy grail of computational drug discovery

Introducing Desmond



Thermodynamic cycle

In this picture, 1 and 2 are difficult to simulate 
directly. 

Instead, we simulate the A (solvent) and B (complex) 
legs of this thermodynamic cycle. We can then use 
knowledge of 1 to determine 2, or vice versa.

 
B

A

1

B

2
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FEP+ Overview



9

FEP+ (our Free Energy Perturbation software) allows us to determine the binding free 
energy of a drug-like molecule to a target protein

FEP+ Overview

Abel R, Wang L, Harder ED, Berne BJ, Friesner RA. Advancing Drug Discovery through Enhanced Free Energy Calculations. Acc Chem 
Res. 2017 Jul 18;50(7):1625-1632. doi: 10.1021/acs.accounts.7b00083. Epub 2017 Jul 5. PMID: 28677954.

Real starting state Real final state



10

FEP+ (our Free Energy Perturbation software) allows us to determine the binding free 
energy of a drug-like molecule to a target protein
• This requires many concurrent MD simulations for “alchemical intermediates”
• Because we usually alchemically perturb a small subset of the system, all of the 

simulations are highly similar in compute requirements

FEP+ Overview

Abel R, Wang L, Harder ED, Berne BJ, Friesner RA. Advancing Drug Discovery through Enhanced Free Energy Calculations. Acc Chem 
Res. 2017 Jul 18;50(7):1625-1632. doi: 10.1021/acs.accounts.7b00083. Epub 2017 Jul 5. PMID: 28677954.

Real starting state Real final stateAlchemical intermediates
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Problem of Strong Scaling
• Biologically interesting proteins are typically the same size - typically protein with a small 

solvent buffer for drug discovery applications

GPUs continue to grow in size while proteins stay the same size
• Amdahl’s Law: Speedup is limited by fraction of software not amenable to parallelization

– Speedup = 1 / (s + p/n), s -> serial part, p -> parallel part, n -> num cores
• Only a fraction of Desmond’s CUDA kernels could fully saturate GPUs, even ten years 

ago. The remainder are effectively serially
• How can we keep up with modern GPUs?

Desmond Performance Issues

https://docs.google.com/file/d/1gWQfmG0qwDXV81c5aAhIbOoUXApPbTZs/preview
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As GPUs continue to get larger, serial bottlenecks become more evident
• Latency of CUDA kernel launches begins to dominate

– As we will discuss later, we can minimize these with CUDA graphs
– Addressing this can ensure that at least some of the SMs are busy all the time

• There will still be times when not all SMs are busy due to serial dependencies on small 
kernels
– This forms the lower limit for time to solution
– In molecular dynamics, we expect alternating small and large kernels, as calculating 

forces can be O(NlogN) or O(K*N), while updating positions and velocities is O(N).

Desmond performance - Reduce serial bottlenecks
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• These are classic strong scaling issues:
– Strong scaling: 

• “Solution time as processors are increased and problem size is constant”
– Amdahl’s Law:

• Speedup is limited by the part of the task which is not parallelizable

● Slatency is the theoretical speedup of the execution of the whole task;

● s is the speedup of the part of the task that benefits from improved system resources;

● p is the proportion of execution time that the part benefiting from improved resources originally occupied.

https://en.wikipedia.org/wiki/Amdahl%27s_law

Strong Scaling and Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl%27s_law
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• Time to solution may be the most ‘attractive’ target, but throughput is often more 
important - this is the case at Schrodinger
– Minimum time to solution is the order of hours - “fast enough” for drug discovery

• Schrodinger averages around 8,000-10,000 GPUs in use at all times
– Customer usage is even more
– Current largest supercomputer “Frontier” has ~37,000 GPUs (albeit larger GPUs)

• Our workload is comparable to constantly running a “medium” supercomputer

• Throughput Strategy: 
– We can “cover up” serial bottlenecks in our program by running many independent 

simulations on the same GPU

Desmond performance - Focus on Throughput
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• So now we know the problems we’re facing
– Fixed-latency CUDA API calls
– Serial dependencies on small kernels
– More generally, Amdahl’s Law

• But, we have one thing going for us
– Focusing on throughput simplifies the problem, we can attempt to overlap multiple 

simulations onto a single GPU
– By expanding the problem, we make it more parallelizable

• If we achieve ~100% utilization - is there any room for improvement in critical kernels?

• In the following slides, you’ll see our approach to solving these problems with the tools 
available in CUDA
– And the speedups we’re able to achieve…

Desmond performance - Summary
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Performance Improvement

ns/day # of atoms 2020-4 latest speed up

SMALL_MD 4k 891 1381 1.55

DHFR 23k 659 843 1.28

FACTOR_IX 90k 287 371 1.29

SOLVENT 5k x 12 100 304 3.04

SOLVENT MPS 6 5k x 12 447 905 2.02

COMPLEX 35k x 12 71 134 1.89

COMPLEX MPS 6 35k x 12 159 204 1.28

• Benchmarked on an A100-40GB
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Performance Improvement
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CUDA Graph
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• CUDA Graph: group the kernels and CUDA APIs together into a graph and execute them 
according to a dependency tree.

• Benefits:
– Less total overhead
– Faster overall kernel/API performance, e.g., less gaps between the kernels
– dependency is handled directly (instead of being specified by the user with CUDA 

streams/events)
• But … one needs to construct the graph beforehand.

CUDA Graph
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CUDA Graph
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CUDA Graph
• Screenshot of a DHFR without the CUDA graph changes.

kernel execution time ~550 us

CUDA API CPU overhead ~520 us
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CUDA Graph
• Screenshot of a DHFR with the CUDA graph changes.

kernel execution time ~320 us

CUDA API CPU overhead ~115 us
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• Two ways to construct a CUDA graph.
• Stream capture:

– All kernels/APIs launched to the stream are captured and a graph with the captured 
nodes are return after the capture.

– Dependencies are figured out automatically based on the CUDA events (if any).
– The kernel/API parameters are recorded by value.

CUDA Graph

cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);

// Launch kernels, CUDA APIs to stream

// End the capture and instantiate the graph
cudaGraph_t _captured_graph;
cudaStreamEndCapture(stream, &_captured_graph);

cudaGraphInstantiate(&_graph_exec, _captured_graph, nullptr, nullptr, 0);

// Launch the graph

cudaGraphLaunch(_graph_exec, some_other_stream);
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• Two ways to construct a CUDA graph.
• Explicit API:

– Nodes are added to the graph explicitly.
– Node dependencies are specified explicitly.

CUDA Graph

// Manually add a new kernel node

cudaGraphNode_t new_node;

cudakernelNodeParams _params_cuda;

cudaGraphAddKernelNode(&new_node, _manual_graph, _deps, _dep_count, &_params_cuda);

cudaGraphInstantiate(&_graph_exec, _manual_graph, nullptr, nullptr, 0);

// Launch the graph

cudaGraphLaunch(_graph_exec, some_other_stream);
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Deal with kernels with dynamic parameters:
• In most cases we want to use the stream capture approach such that we do not need to 

rewrite the code completely.
• For a small number of kernels we want to have access to the kernel node handles such 

that we can update those kernel nodes at runtime, without needing to re-do the 
capture-then-instantiate process.

• Specifically, we have a kernel whose launch configurations change from invocation to 
invocation.

CUDA Graph
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cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);

// Launch kernels, CUDA APIs to stream

// Get the current stream capturing graph

// ...

cudaStreamGetCaptureInfo_v2(stream, &_capture_status, nullptr &_capturing_graph, &_deps, &_dep_count);

// Manually add a new kernel node and store the new node for future references

// ...

cudaGraphAddKernelNode(&new_node, _capturing_graph, _deps, _dep_count, &_dynamic_params_cuda);

// ...

// Update the stream dependencies

cudaStreamUpdateCaptureDependencies(stream, &new_node, 1, 1); 

// End the capture and instantiate the graph

cudaGraph_t _captured_graph;

cudaStreamEndCapture(stream, &_captured_graph);

cudaGraphInstantiate(&_graph_exec, _captured_graph, nullptr, nullptr, 0);
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Deal with kernels with dynamic parameters:
• https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/
• Combine the stream capture and explicit API method to be able to dynamically updating 

specific kernel node parameters (i.e., kernel launch configurations and kernel 
parameters) without launching every kernel with explicit API.

• While doing a stream capture, manually adding kernel nodes whose handles can be 
used later to update their parameters: 

CUDA Graph

https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/
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Graph comparison
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• CUDA Graph stream recording, while convenient, introduces software risk
– In order to use the recorded graph in a subsequent timestep, we require knowledge 

that the same sequence of CUDA operations will be performed
– The recording/replaying layer must have absolute knowledge of all CUDA operations 

that will be performed by all code below it in the call stack
• Violates a number of tenets of software design by coupling the lowest levels to the 

highest, breaking encapsulation and separation of concerns.
• Any future change to the lower level code must consider whether the graph 

recording layer needs to be made aware of it
• Any incongruity between the recording code would be silently ignored

• How can we get the substantial benefit of using CUDA Graphs without sacrificing on 
software reliability and maintainability?

Graph Recording introduces risk
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• Let’s say an engineer wants to add the following behavior inside a function covered by 
CUDA graph recording
– As a result of a 50/50 coin flip, one of the force evaluation kernels will either:

i. Not be evaluated - `F = 0`
ii. Be evaluated with forces multiplied by 2 - `F *= 2`

• A graph recorded on an arbitrary timestep either includes no kernel or the kernel 
multiplied by two

• At all subsequent timesteps the graph will replay the same operation, resulting in either 
no force, or double the force. 
– Silently incorrect results, could easily be missed

• For large software development teams, we can’t expect all engineers to know about all 
parts of the code (or at least we really don’t want to).

Graph Recording introduces risk - example
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• Of course, we can use the explicit API to add nodes to the graph. This can potentially 
solve this software risk
– For each kernel node, we record the local inputs that kernel node depends on into a 

key. These are aggregated into a key for the entire graph.
– On any given timestep, we can call into the same stack to generate the graph keys, 

and if such a graph has already been instantiated, we can use it. Otherwise, we add 
a new graph.

– For our example, we would have a key corresponding to the coinflip result, and two 
graphs associated with heads and tails results.

• Certainly robust, solves the aforementioned risk issues
• However, requires a large code investment. Essentially the entirety of the CUDA-aware 

codebase needs to be rewritten
– Potential future option for Schrodinger, depending on the permanence of the feature.

Graph Recording introduces risk - use explicit API
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• Idea: Periodically, on a timestep where we would ‘replay’ a graph, also re-record a new 
graph.
– Then compare the two graphs for equality, down to the pointer and value parameters 

of CUDA kernels
• Intermediate solution between the safety of explicit graphs and the convenience of 

recorded graphs
– We can choose the period to minimize the overhead, while still ensuring that graph 

comparisons happen hundreds of times during a simulation (which may have millions 
of timesteps)

– Any comparison failure would cause the entire program to fail
• Significantly reduces the likelihood of uncaught errors, failures can be caught early by 

automated testing

Graph Recording solution - Graph comparison
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• Unfortunately, things are not so simple
– No CUDA API exists for comparing graphs
– Graph Kernel nodes store their function pointers and parameters as type-erased 

`void**`

Graph Comparison - technical challenges

struct __device_builtin__ cudaKernelNodeParams {

   void* func; /**< Kernel to launch */

   dim3 gridDim; /**< Grid dimensions */

   dim3 blockDim; /**< Block dimensions */

   void **kernelParams; /**< Array of pointers to kernel arguments*/

   ...

};

bool compare_kernel_node_params(

    const cudaKernelNodeParams& params_a,

    const cudaKernelNodeParams& params_b) {

    auto valueFields = [](const auto& params) {

        return std::make_tuple(params.func, 

           params.gridDim, params.blockDim, ...);

    };

    bool vals_equal = valueFields(params_a) ==

                      valueFields(params_b);

    bool kernel_params_equal = ???(params_a.kernelParams,

                                   params_b.kernelParams)

    return vals_equal && kernel_params_equal;

}

Values in `kernelParams` are copied internally in each recorded CUDA 
graph, so the pointers will not point to the same locations. Instead, we 
must compare the values pointed to. 

However, we cannot safely compare them without their types. For ‘trivial’ 
types, we need at least the size of the type, and for non-trivial types we 
may need a custom operator== method.
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• Some engineering will be required:
– Create a global registry of ‘kernel comparators’, keyed by function pointers
– For each recordable kernel, create a comparator that can cast the type-erased 

arguments back to their real types and compare them one by one. 
• When any kernel is called, register the comparator with the kernel’s function 

pointer (if not already)
– When performing graph comparison, compare each node in the graph. If it is a kernel 

node, look up the registered kernel comparator and call it with the type-erased kernel 
arguments of the recorded node

Graph Comparison - technical challenges
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class CompareArgsRegistry {

 public:

   // Attempt to insert a function into the registry, generating a

   // corresponding comparator based on the function signature.

   template <typename... Args> void register(void(fcn)(Args...)) {

       

   }

   

   // Compares two sets of type-erased arguments to the same function pointer

   // by finding the registered comparator for that function.

   bool compare(void* func, void** args1, void** args2);

   static CompareArgsRegistry& instance();

 private:

   using ComparatorFcn = std::function<bool(void**, void**)>;

   using RegistryT = std::map<void*, ComparatorFcn>;

   RegistryT m_registry{};

};

Graph Comparison - Registration
// generic functor kernel

template <typename FunctorT>

__global__ void generic_kernel(FunctorT functor, uint n)

{

   uint idx = threadIdx.x + blockDim.x * blockIdx.x;

   if (idx < n)  {

      functor(idx);

   }

}

// arbitrary kernel functor

struct Truncate {

   float* data;

   float max_val;

   __device__ void operator()(uint idx) {

       data[idx] = min(data[idx], max_val);

   }

};

// typical registration and launch site

void truncate_buffer(GPUArray<float> arr, float max_val) {

    Truncate truncate_k{arr.data(), max_val};

    generic_kernel<<<...>>>(truncate_k, arr.size());

}
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class CompareArgsRegistry {

 public:

   // Attempt to insert a function into the registry, generating a

   // corresponding comparator based on the function signature.

   template <typename... Args> void register(void(fcn)(Args...)) {

       auto erased_fcn = (void*)fcn;

       auto search = m_registry.find(erased_fcn);

       if (search == m_registry.end()) {

           m_registry[erased_fcn] = Comparator<Args...>;

       } else {

           // we can verify the registered function here, or simply no-op

       }

   }

   

   // Compares two sets of type-erased arguments to the same function pointer

   // by finding the registered comparator for that function.

   bool compare(void* func, void** args1, void** args2);

   static CompareArgsRegistry& instance();

 private:

   using ComparatorFcn = std::function<bool(void**, void**)>;

   using RegistryT = std::map<void*, ComparatorFcn>;

   RegistryT m_registry{};

};

Graph Comparison - Registration
// generic functor kernel

template <typename FunctorT>

__global__ void generic_kernel(FunctorT functor, uint n)

{

   uint idx = threadIdx.x + blockDim.x * blockIdx.x;

   if (idx < n)  {

      functor(idx);

   }

}

// arbitrary kernel functor

struct Truncate {

   float* data;

   float max_val;

   __device__ void operator()(uint idx) {

       data[idx] = min(data[idx], max_val);

   }

   // need to define equality operator for comparison

   bool operator==(const Truncate& other) {

      return data == other.data && max_val == other.max_val;

   }

};

// typical registration and launch site

void truncate_buffer(GPUArray<float> arr, float max_val) {

    Truncate truncate_k{arr.data(), max_val};

    CompareArgsRegistry::instance().register(generic_kernel<Truncate>);

    generic_kernel<<<...>>>(truncate_k, arr.size());

}
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class CompareArgsRegistry {

 public:

   // Attempt to insert a function into the registry, generating a

   // corresponding comparator based on the function signature.

   template <typename... Args> void register(void(fcn)(Args...)) {

       auto erased_fcn = (void*)fcn;

       auto search = m_registry.find(erased_fcn);

       if (search == m_registry.end()) {

           m_registry[erased_fcn] = Comparator<Args...>();

       } else {

           // we can verify the registered function here, or simply no-op

       }

   }

   

   // Compares two sets of type-erased arguments to the same function pointer

   // by finding the registered comparator for that function.

   bool compare(void* func, void** args1, void** args2);

   static CompareArgsRegistry& instance();

 private:

   using ComparatorFcn = std::function<bool(void**, void**)>;

   using RegistryT = std::map<void*, ComparatorFcn>;

   RegistryT m_registry{};

};

Graph Comparison - Comparison
bool CompareArgsRegistry::compare(void* func, void** args1, void** args2) {

   auto search = m_registry.find(func);

   if (search != m_registry.end()) {

       auto args_equal = search->second(args1, args2);

       return args_equal;

   }

   throw std::runtime_error(“Comparator not found for function”);

}
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class CompareArgsRegistry {

 public:

   // Attempt to insert a function into the registry, generating a

   // corresponding comparator based on the function signature.

   template <typename... Args> void register(void(fcn)(Args...)) {

       auto erased_fcn = (void*)fcn;

       auto search = m_registry.find(erased_fcn);

       if (search == m_registry.end()) {

           m_registry[erased_fcn] = Comparator<Args...>();

       } else {

           // we can verify the registered function here, or simply no-op

       }

   }

   

   // Compares two sets of type-erased arguments to the same function pointer

   // by finding the registered comparator for that function.

   bool compare(void* func, void** args1, void** args2);

   static CompareArgsRegistry& instance();

 private:

   using ComparatorFcn = std::function<bool(void**, void**)>;

   using RegistryT = std::map<void*, ComparatorFcn>;

   RegistryT m_registry{};

};

Graph Comparison - Comparison
bool CompareArgsRegistry::compare(void* func, void** args1, void** args2) {

   auto search = m_registry.find(func);

   if (search != m_registry.end()) {

       auto args_equal = search->second(args1, args2);

       return args_equal;

   }

   throw std::runtime_error(“Comparator not found for function”);

}

template <typename Arg> 

bool compare_arg(void* arg1, void* arg2) {

    // convert a `void*` argument to `Arg`

   auto as_arg = [](void* arg) -> const Arg& {

       return *static_cast<Arg*>(arg);

   };

   return as_arg(args1) == as_arg(args2));

}

// Peel off first element and compare, then call recursively

template <typename... Args> struct Comparator {

    bool operator()(void** args1, void** args2) {

        return (compare_arg<Args>(*(args1++), *(args2++)) && ...);

    }

};
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class CompareArgsRegistry {

 public:

   // Attempt to insert a function into the registry, generating a

   // corresponding comparator based on the function signature.

   template <typename... Args> void register(void(fcn)(Args...)) {

       auto erased_fcn = (void*)fcn;

       auto search = m_registry.find(erased_fcn);

       if (search == m_registry.end()) {

           m_registry[erased_fcn] = Comparator<Args...>();

       } else {

           // we can verify the registered function here, or simply no-op

       }

   }

   

   // Compares two sets of type-erased arguments to the same function pointer

   // by finding the registered comparator for that function.

   bool compare(void* func, void** args1, void** args2);

   static CompareArgsRegistry& instance();

 private:

   using ComparatorFcn = std::function<bool(void**, void**)>;

   using RegistryT = std::map<void*, ComparatorFcn>;

   RegistryT m_registry{};

};

Graph Comparison - Comparison
bool CompareArgsRegistry::compare(void* func, void** args1, void** args2) {

   auto search = m_registry.find(func);

   if (search != m_registry.end()) {

       auto args_equal = search->second(args1, args2);

       return args_equal;

   }

   throw std::runtime_error(“Comparator not found for function”);

}

template <typename Arg> 

bool compare_arg(void* arg1, void* arg2) {

    // convert a `void*` argument to `Arg`

   auto as_arg = [](void* arg) -> const Arg& {

       return *static_cast<Arg*>(arg);

   };

   return as_arg(args1) == as_arg(args2));

}

// Peel off first element and compare, then call recursively

template <typename... Args> struct Comparator {

    bool operator()(void** args1, void** args2) {

        return (compare_arg<Args>(*(args1++), *(args2++)) && ...);

    }

};

// Finally, we can compare our `cudaKernelNodeParams::kernelParams`

const auto& registry = CompareArgsRegistry::instance();

bool kernel_params_equal = registry.compare(params_a.kernelParams,

                                            params_b.kernelParams);
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Coroutine



• Throughput can be increased by scheduling concurrent simulations to the same GPU
– We can think of total simulations per time per resource

• Alternatively, we can target high GPU utilization, which is a more convenient 
metric, as long as we don’t perform ‘extra’ work.

• There are a number of options to achieve this type of concurrency - threads, MPI + 
CUDA MPS, or kernel interleaving
– The engineering and maintenance costs of threads can be rather high. Compared to 

MPS, threading also is more challenging for the CUDA driver to handle. 
– MPI + MPS (Multi-Process Service) requires more CPUs per GPU and can 

bottleneck with a high number of small kernels
– Kernel interleaving typically restructuring the program to overlap synchronization 

points, typically this involves significant and often undesirable code changes
• As we’ll see later, with the use of coroutines we can achieve this with minimal 

restructuring

41

Optimizing for throughput
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• Concurrency can be limited by the data itself - we need lots of ideally load-balanced 
simulations to be requested at the same time
– Fortunately, FEP+ has built-in concurrency that is nearly perfect for this use
– Each perturbation contains 12+ MD simulations of almost identical size, so 

load-balance will not be an issue
– The most expensive ‘production’ simulations are already time-sliced in the same 

process, and optionally spread into chunks across a number of MPI processes, due 
to the need for communication.
• These can be easily rearranged for concurrency

– Some smaller ‘equilibration’ simulations are independent and launched separately
• Requires restructuring, or we can just use MPS

• A combination of MPS + coroutines allows us the flexibility to optimize both the fully 
independent equilibration simulation and the synchronized production stages

FEP+ has built-in source of concurrency
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FEP+ has built-in source of concurrency

MPI 
processes

MD simulations

Communications Communications

MD simulations
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Sovent leg without coroutine

~ 4ms
function

stream synchronization
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Solvent leg with coroutine

~2 ms
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Coroutines can be described as “Functions that can be paused”
• Those proficient in Python will likely recognize ‘generators’, which use `yield` statements 

to return control flow to the calling function
– Control can then be resumed from the yield statement by calling `next` on the 

generator
– These generators are a stripped-down example of coroutines

• General-purpose coroutines can be more complex, allowing control flow to be yielded to 
any other coroutine, and allowing complex communication
– For our purposes, we need to yield to the top-level caller, and we don’t require 

additional communication
• We use the boost coroutine library

– https://www.boost.org/doc/libs/1_84_0/libs/coroutine2/doc/html/index.html
– This gives us ‘stackful asymmetric coroutines’, allowing us to yield from any point in 

the program back to the original caller

Coroutines

https://www.boost.org/doc/libs/1_84_0/libs/coroutine2/doc/html/index.html
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Coroutines allow us to overlap computation from multiple simulations - simply yield before 
synchronization points

Coroutine code sample

// in top-level function that manages replicas
std::vector<coroutine_t::pull_type> pull_vector;
for (ReplicaPtr& r : replicas) {
   auto coroutine_fcn = [&](coroutine_t::push_type& sink) {
       // Sets/unsets coroutine sink. We could also pass to `apply` below.
       ScopedCoroutineHandle handle(r->sim(), sink);
       // main per-replica function
       r->sim().apply();
   };
   v_pull.emplace_back(coroutine_fcn);
}

auto check_and_enter_coroutine = [](auto& pull) -> bool {
    if (pull) pull(); // enter coroutine if necessary
    return bool(pull); // work still remains
}
for (bool work_remains = true; work_remains;) {
    work_remains = std::accumulate(pull_vector.begin(), pull_vector.end(),
                                   false, check_and_enter_coroutine);
}

// many places inside sim::apply

do_some_cuda_work(cuda_stream);

// before syncing the stream, check if
// this is a coroutine invocation
if (has_sim_sink()) {
    call_sink(); // if so, yield
}
cudaStreamSynchronize(cuda_stream);

...

do_some_more_cuda_work(cuda_stream);

// yield again
if (has_sim_sink()) {
    call_sink(); // if so, yield
}
cudaStreamSynchronize(cuda_stream);



48

Performance

ns/day latest without coroutine latest speed up from coroutine

SOLVENT 226 304 1.34

SOLVENT MPS 6 805 905 1.12

COMPLEX 110 134 1.21

COMPLEX MPS 6 201 204 1.01

• Benchmarked on an A100-40GB

• Solvent leg simulations are very small - no protein
• Many small kernels leads to underutilization, and thus more benefit from coroutine
• A mix of coroutine + MPS is better than MPS alone
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Performance
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Mapped memory
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Mapped memory: A page-locked memory that is accessible to the device 
• allocated with cudaHostAlloc/cudaHostRegister/cudaMallocHost.
• CUDA kernels can write directly to mapped memory - no need to first writing to device 

memory and then copying to host memory with an additional cudaMemcpy, thus also the 
name zero copy.

• Helps in situations where latency matters (host CUDA API latency, PCIe latency, etc).

Mapped memory
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Shared memory
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• L1 cache
– High bandwidth, low latency on-chip cache.

• Shared memory
– Programmable L1 cache (that has to be CUDA-programmed).

• The same VDW coefficients are needed for computation repeatedly in the near term 
kernel in DESMOND.

• Previously they are loaded directly from texture. In principle the L1 cache hit rate for 
them should already be high. However these loads compete with loads for other types of 
data, resulting in worse cache thrashing.

• Now at the beginning of the kernel all the VDW coefficients are loaded from texture once 
and are then stored in shared memory. Later in the kernel they are loaded from shared 
memory directly.

Shared memory
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Shared memory

CUDA Kernels

VDW 
coefficients Other data

L1 Cache

CUDA Kernels

VDW 
coefficients Other data

L1 Cache
Shared 
Memory

• Reduces L1 cache thrashing by leaving the L1 cache to the other loads: they have lower 
L1 hit rate and have larger footprint that they cannot fit in shared memory.
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• As expected, we have got more shared memory loads but less loads from texture.

Shared memory
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• Stall long scoreboard is greatly reduced.
• Total kernel cycle: 109,398 -> 86,664 (21% faster).
• Stall long scoreboard:

9.43->3.34
• Stall short scoreboard:

0.70->0.87

Shared memory
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Applying more (new) CUDA 
features
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• Conditional nodes in CUDA graph
– Less number of CUDA graphs to manage, since one graph can be used for multiple 

workflow needs. Less memory needed.
– Less overall engineering cost.

• CUDA dynamic parallelism (CDP) 
– Launching kernels, allocating CUDA memory, etc, from within a CUDA kernel.
– Results in (even) less number of host-device synchronizations, since the most of the 

things can happen on the device.
– This then results in (even) better overall performance.

• … and potentially more

More CUDA features
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Please feel free to contact us
• Ellery Russell: ellery.russell@schrodinger.com
• Jiqun Tu: jtu@nvidia.com

For more information, please see:
• Technical Blog: “Constructing CUDA Graphs with Dynamic Parameters”

Thanks for Attending

mailto:ellery.russell@schrodinger.com
https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/

