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HPC and AI Energy and Power

Introduction

• Traditionally, the most important goal has been to minimize time to solution (or equivalently maximize performance).

• With increasing energy costs and environmental impact, it is becoming increasingly important to also consider energy 
minimization 

• Energy = Power x Time

• Power must be considered in conjunction with time to solution.  

• Minimizing energy to solution is exactly the same as maximizing Performance/Watt

• NVIDIA GPUs can be configured to run at reduced clock frequencies, which effects power, time and hence energy.

• It is important to consider not only GPU behaviour, but in the context of the server and datacenter.

• This presentation analyses the impact of tuning energy usage on a range of HPC and AI applications on modern NVIDIA 
GPU-accelerated servers. 

• We hope this is useful to help users to decide and apply the configuration that best suits their workload and goal.

• Beyond clock frequency tuning: application level choices can be assessed on how they impact performance and energy. 

• Explored through the GROMACS application

• Note: GTC 23 Presentation “Optimizing Energy Efficiency for Applications on NVIDIA GPUs”, includes how-to commands 
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s52087/

https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s52087/


Key Findings

• Reducing clock frequency will decrease the power (and vice versa) while increasing the time to solution.

• Maximum frequency gives best performance, but not best energy.

• There exists a frequency sweet spot for best energy, for each application.

• Tuning for energy must be done in context of server and datacentre, since non-GPU power overheads are significant.

• Further energy tuning can be done by exploring application-level choices.

• Most often, optimizing apps to maximize performance will also minimize energy (at any chosen clock frequency).



Energy Optimization
Outline

• Overview of HPC and AI Application Benchmarks

• H100 GPU measurements

• Time, GPU power and GPU energy variance with clock frequency on H100 systems for the range of applications

• DGX-A100 measurements

• Comprehensive full-server measurements and analysis on a DGX server with 8xA100 GPUs for subset of apps

• H100 full-server estimates

• Learnings from DGX-A100 applied to single-H100 measurements to estimate energy-saving potential for apps on typical 
multi-H100 server configurations

• Application-level choices in GROMACS

• Summary



Overview of HPC and AI 
Application Benchmarks



HPC and AI Application Benchmarks

• Molecular Dynamics

• GROMACS (https://www.gromacs.org/)

• STMV workload. Mainly limited by on-GPU computations and associated instruction scheduling.

• Particle Physics (Lattice QCD)

• CHROMA (https://jeffersonlab.github.io/chroma/)

• HMC Medium workload. Mainly limited by HBM memory bandwidth.

• PRACE QCD (https://repository.prace-ri.eu/git/UEABS/ueabs )

• PRACE Unified European Applications Benchmark Suite QCD Part 1 workload, based on MILC kernels. Mainly limited by HBM memory 
bandwidth.

• Weather

• ICON
(https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description
.html) 

• QUBICC R02B05 workload. Mainly limited by HBM memory bandwidth.

• Plasma Physics

• PIConGPU (Particle in Cell) (https://github.com/ComputationalRadiationPhysics/picongpu) 

• SPEC 256^3 workload. Mainly limited by on-GPU computation, memory accesses and associated instruction scheduling.

• Quantum Chemistry (Density Functional Theory)

• Quantum Espresso (QE) (https://www.quantum-espresso.org/)

• TA205 workload. Alternating phases of compute-intensive linear algebra and HBM memory bandwidth intensive work.

• AI Inference

• TensorRT-LLM (https://github.com/NVIDIA/TensorRT-LLM) 

• LLaMA2-13B model with input 2048, output 128, batch size 48, and 100 iterations (also include sweep through other variants). Limited 
by tensor-core compute and HBM memory bandwidth

Chosen to be representative of typical workloads

https://www.gromacs.org/
https://jeffersonlab.github.io/chroma/
https://repository.prace-ri.eu/git/UEABS/ueabs
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
https://github.com/ComputationalRadiationPhysics/picongpu
https://www.quantum-espresso.org/
https://github.com/NVIDIA/TensorRT-LLM


H100 GPU Measurements



Application Power on H100
GPU power measured with decreasing GPU clock frequency 

• GPU Power draw decreases with decreasing GPU clocks

• This behaviour must be considered together with walltime (next slide) to assess scope for reducing energy.

• Gradients and curves are app-dependent
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Application Walltime on H100
Normalized walltime with decreasing GPU clock frequency

• Walltime increases with decreasing GPU clock frequency

• Gradients/curves are app dependent

• Combined with previous power measurements, we can assess overall energy usage (Energy = Power x Time)
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GPU-only energy on H100 with reduced clock frequency
Time x Power = Energy

• We first show only a single app (GROMACS) for clarity

• Only 68% of default GPU energy used (i.e. 32% energy saving) by reducing SM frequency from 1980 MHz to 1200 MHz.
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GPU energy savings on 1xH100 with reduced clock
Time x Power = Energy

• GPU energy saving for all benchmarks at reduced frequency, in the range of 20-30%.

• Geomean GPU-only saving is 27.3%.

• Best-energy clock setting is similar across apps (around 1200MHz).

• HOWEVER: this is only GPU. Other non-GPU power/energy usage must also be factored in for holistic picture.
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TRT-LLM Inference GPU energy savings on 1xH100 with reduced clock
Time x Power = Energy

• Sweep of different options

• Energy savings available for all, with similar sweet spot.

• Larger energy savings with batching.
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DGX-A100 Measurements



GPU-only energy with reduced clock frequency 
for 8xA100 on DGX

Time x Power = Energy

• Consider subset of 2 apps: GROMACS and PRACE QCD

• For each app, ensemble of 8 jobs across 8 A100 GPUs (and 2xAMD Rome CPUs) to fully saturate server

• When only considering GPU power (and hence energy), we observe ~25-30% energy savings at 1050 MHz
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Non-GPU energy with reduced 
GPU clock frequency

Time x Power = Energy

• Measured total server PSU power, with GPU power subtracted

• Non-GPU power draw is higher than GPU power draw, and is largely constant with decreasing GPU clock

• When combined with increasing walltimes (due to decreased GPU clock), results in app-dependent energy increases.
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Total server energy with 
reduced GPU clock frequency

Time x Power = Energy

• Combination of GPU-only and non-GPU for total server energy.

• We still have energy savings, but non-GPU power draw is reducing overall impact.

• Non-GPU impact worse for GROMACS, due to walltime sensitivity to reduced clock. 

• Best-energy frequency is now shifted and not consistent across apps. 

• As we will now discuss, typical modern HPC server will have less non-GPU impact and better overall savings. 
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H100 Full Server Estimates
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H100 HPC Server Energy Saving Estimates
Time x Power = Energy

• We estimate non-GPU power overheads for Air Cooling and Direct Liquid Cooling (DLC), including all components in 
server and datacentre.

• See https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s52087/

• We calculate adjusted energy saving characteristics, including these overheads

• We can also calculate the geomean energy saving across apps for the full range of power overheads

Full DLCAir Cooled
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inc. non-GPU overhead on H100

NON-GPU OVERHEAD=558W, GEOMEAN SAVING = 3.6%
NON-GPU OVERHEAD=276W, GEOMEAN SAVING = 8.1%

https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s52087/
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Energy savings dependent on non-GPU Power

• Based on DGX-A100 measurements, we have modelled power profile for several HGX-H100 server configurations. Includes 
typical non-server overheads in datacenter

• Overall saving strongly depends on (constant power) non-GPU overheads. Energy savings maximized when

• Non-GPU power minimized

• Non-GPU power can ramp down in a similar way to GPU power

• Liquid cooling has a strong benefit in reducing energy utilization

• Best clock is dependent on workload (must be tuned) 

Full DLC

Air Cooled



Application-level choices -
GROMACS



• Simulation package for biomolecular systems - one of the most highly used scientific software applications 
worldwide, and a key tool in understanding important biological processes. 
• https://www.gromacs.org/
• https://developer.nvidia.com/blog/tag/gromacs/

• Evolves systems of particles through repeated updates based on forces.

• Users can choose which components are offloaded to GPU at runtime

• Non-bonded short-range forces (NB) 

• Most demanding force calculations - minimal required for GPU-accelerated GROMACS 

• Particle Mesh Ewald long-range forces (PME) 

• Bonded Forces (Bonded)

• Update and Constraints (Update)

• PME, Bonded and Update can be independently offloaded, each depending on NB offload. Performance and energy of 
such choices will be assessed. 

Also:

• Choice of neighbour search frequency

• Choice of tabulated or analytical Ewald non-bonded kernels

All results are for STMV benchmark.

GROMACS GPU APP-LEVEL CHOICES

https://developer.nvidia.com/blog/tag/gromacs/
https://developer.nvidia.com/blog/tag/gromacs/


Label: clock-frequency_offloaded-parts

• Running PME or Update on CPU is a lot slower and a huge waste of energy

• Running Bonded on CPU or GPU is a close-call in time and energy.

• Choice which minimizes runtime also minimizes energy.

GROMACS Time and Energy on DGX-A100
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Energy is GPU + CPU (and respective memories) only

• Update on CPU has less of a disadvantage, due to C2C and more CPU capability per GPU (but still slower than GPU with higher energy).

• At energy-efficient 1260 MHz, bonded on CPU is slightly faster but higher energy (due to CPU load)

• User choice between runtime and energy minimization.

GROMACS Time and Energy on Grace+Hopper
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• Grace+Hopper (GH200) is NVIDIA’s newest product with NV ARM CPU and H100 GPU.  

• Very high bandwidth NVLINK C2C CPU-GPU interconnect (vs PCIe)

• 72 ARM cores per H100 (vs 16 X86 cores per A100 for Selene results).

• This test case is around 2X faster than X86+A100.



Tuning both GPU and CPU clocks on Grace+Hopper
GROMACS STMV 

• CPU clock frequency provides another tunable parameter

• Overall best energy for this case is at CPU:1600 MHz GPU: 1260 MHz.
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Performance and Energy of Algorithmic Choice

• Benefit of TAB over ANA. >1 (green) means TAB better, <1 (red) means ANA better. Grey means less than 2% difference.

• TAB is better for A100, and ANA is better for other architectures (which have extra floating point throughput per SM to 
handle extra FLOPS). 

• H100 interesting, since no significant effect on time, but significantly lower energy with ANA

• https://gitlab.com/gromacs/gromacs/-/issues/4778

GROMACS Tabulated vs Analytical Ewald NB kernels

H100 time H100 energy A100 time A100 energy L40S time L40S energy A40 time A40 energy

ADHD 0.994 0.961 0.999 0.985 0.993 0.951 1.000 0.970

EAG1 1.007 0.962 0.998 1.010 1.000 0.978 1.000 0.989

STMV 1.006 0.954 1.019 1.007 0.996 0.992 0.978 0.978

grompp-fsw 1.008 0.970 1.034 1.050 0.966 0.970 0.976 0.972

grompp-fsw_rc1.2 1.009 0.957 1.046 1.026 0.970 0.972 0.972 0.976

grompp-psh 0.994 0.965 1.086 1.085 0.948 0.945 0.954 0.949

grompp-psw 0.997 0.979 1.039 1.025 0.975 0.979 0.972 0.972

• For non-bonded (NB) force calculations on GPU, GROMACS has the option of using tabulated (TAB) or analytical (ANA) Ewald kernels.        

• TAB uses tabulated data which is read from cache (more memory loads), while ANA recalculates the data (more FLOPS). 

https://gitlab.com/gromacs/gromacs/-/issues/4778


Performance and Energy of Algorithmic Choice

• Nstlist: tunable runtime option to specify number of steps between neighbour list generation.

• Tuning nstlist for time/performance also tunes for energy

GROMACS Neighbour Search Frequency
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Summary



Summary

• Reducing GPU clock frequency

• Increases runtime

• Decreases power

• Impacts Energy = Power x Time (equivalently Performance/Watt)

• Large GPU-only energy savings are available by finding the frequency sweet spot

• Inclusion of non-GPU power draw reduces the energy-saving impact, but it remains significant.

• Overall (full data center) energy saving can be maximised through minimizing non-GPU power usage

• In particular, Direct Liquid Cooling offers a large benefit to the energy-saving potential.

Technology providers: strive to minimize the power consumed by all the components in the server and data center. 
Allow power draw for all components to reduce in line with GPU.  

Users/admins: for any specific workload, vary GPU clock frequency, measure power and walltime, and calculate energy 
to find the sweet-spot. Power must include that from non-GPU components.

Application level choices:

• In vast majority of cases, choices which maximize performance will also minimize energy (due to minimizing time and 
energy wasted due to power overheads). 

• Where choices have similar performance, fine tuning of energy optimization is possible through e.g. minimizing CPU 
computation or favouring computation over memory loads on GPU. Experimentation necessary.
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