
S62797 - LLM Inference Sizing:
Benchmarking End-to-End
Inference Systems
Dmitry Mironov
Solutions Architect, NVIDIA
Sergio Perez
Solutions Architect, NVIDIA

About Us

- Senior Deep Learning Solutions Architect @ NVIDIA -
Supporting deployment of AI / Deep Learning solutions

- Focusing on large scale efficient deployment and inference

- Co-author of NeMo Inference Sizing Calculator

Let's coordinate inference conversation

- Senior Deep Learning Solutions Architect @ NVIDIA -
Supporting delivery of AI / Deep Learning solutions

- Focusing on quantization in training and inference

- Co-author of NeMo Inference Sizing Calculator

Dmitry Mironov, EMEA

dmitrym@nvidia.com

Sergio Perez, EMEA

sergiop@nvidia.com

mailto:dmitrym@nvidia.com
mailto:sergiop@nvidia.com

Sizing for Inference can get a bit complicated

Inference performance tools to help you are emerging

Short summary of how to think about a problem and

live demo

Agenda

Customer Use Case Example
Challenges of sizing

Customers Support

Tickets

RAG

Direct

Feedback

Human

Intervention
Agent RAG

Public

& User-specific DB

Full DB, available

to the agent

Customer Use Case Example
Challenges of sizing

How many systems do

we need to buy for

this?

Customer Use Case Example
Challenges of sizing

How long is a piece of

string?

How many systems do

we need to buy for

this?

Customer Use Case Example
Challenges of sizing

How many systems do

we need to buy for

this?

How long is a piece of

string?

• 3500 words in, 500 words out

• NeMo 43B GPT

• First token latency limit 3s

• Max 31 requests (=prompts) per second

• The customer needs 13 DGX H100 systems
• DGX H100 can serve 2.4 requests per second

• First token latency 2606 ms (prefill) is within the limit specified

Inter-token latency 21.4 ms/generated token

• Generation latency of 500 tokens = 21.4 * 500 = 10 700 ms = 10.7 s

Two Stages of LLM Execution
Prefill vs Decoding

• Prefill = time to first token (⁓word)

• Loading the user prompt into the system

• From the request reception to the first token

• Depends only on the number of input tokens

• Populate KV-cache for all the tokens from the prompt.

• Compute-bound for most of the reasonable prompt lengths

• Decoding = inter-token latency

• Generating the response token by token, word by word

• Inter-token latency depends on the total token number, both
input and output tokens.

• Usually memory-bound

Prefill, first-response Decoding

User: generate me a song. AI: Could you please me with some specifics for your

prompt

Prefill: 1.14s, 5 input tokens, 1 output token

Decoding: 1.62s, 33 output tokens

user prompt

The Two Things To Care About
Where and how do we execute inference?

On-prem Cloud Online Offline

Where? How?

Where?
Significant impact of deployment location

On-prem Cloud

• Fixed Capacity: you need to understand

the size for the maximum simultaneous

load

• Pricing model: per peak capacity

• Variable Capacity: APIs hide capacity

concerns – in reality, similar limitations

apply (GPU shortage)

• Pricing model: per token• Minimal

Capacity +

Autoscaling

for bursts

How?
Significant impact of inference strategy

Online Offline

• Complexity: it matters to people how quickly they

will get their response

• Imposing latency requirement significantly

decreases available throughput. Need to balance

between throughput and latency

• Simplest execution model

• Throughput, throughput, throughput:

maximum GPU utilization, maximum batch

size

Fun fact: Fast human reading speed is 90 ms/token (=500

words/minute at 0.75 tokens/word) (avg is 200 ms/token)

Optional sequential

request to LLM:

“What should a

database query look

like for this prompt”

DB Query Run,

Building the final

prompt

Streaming request

to the LLM, if the

app allows that.

Sequential

otherwise.

Online Streaming vs Sequential
Two facets of latency

• Streaming, when it is OK to give people answer
one token at a time.

• In this situation only the TIME-TO-FIRST-TOKEN
matters (as we generate text faster than people
can read).

• One needs to develop the app streaming
capabilities.

• Simpler to satisfy real-time latency requirements

• Can be implemented only in the last step of the
pipeline

• Sequential, when one waits for the full response

• Say you want to check whether the user question is
not toxic BEFORE you start answering.

• In this case END-TO-END latency/time to last token
matters

• Legacy apps can be simply updated with sequential
mode

• Latency requirements are too restricting for
throughput

In This Presentation
We focus on the most complicated part of the problem

On-prem Cloud Online Offline

Where? How?

Sizing One Use Case

Questions for a Sizing Use Case

1. What model are you planning to use?

2. What is the average number of tokens in the prompt to your LLM (Length of input)?

• For English one token is approximately 0.75 of a word.

• Make sure to include system prompt.

3. What is the average number of tokens in your LLM output?

4. How many requests per second should your system process at its peak?

5. What is your latency limit? First-token? Last-token?

! !

Which Model?
The most popular requests

• Typically, we get asked about LLaMa 2 family of the models:

• Free for research and commercial use

• Supported by NVIDIA SW stack, including NeMo

• The bigger the model, the more resources it needs for inference

• The bigger the model the better the accuracy

• Very roughly the resource amount scales with the model size

• If considering LLaMa 7B and 13B parameters, see also NVIDIA Nemotron-3 8B Family of models: blog

= =

https://developer.nvidia.com/blog/nvidia-ai-foundation-models-build-custom-enterprise-chatbots-and-co-pilots-with-production-ready-llms/

Input Length
There's a maximum budget of tokens to pass into the model

• Most of the models support up to 4096 tokens.

• Context window = input tokens + output tokens

• Llama2 supports 4096 context window

• New models support even larger context windows

• Everything counts so be careful:

• System prompt (a.k.a custom instructions): instructions
you give to the model for every “dialogue”. Make sure to
include them into the input token count as shown in
example on the right.

• Retrieved documents (a.k.a Retrieval Augmented
Generation, RAG). For RAG pipelines key paragraphs from
the internal document storage are added to the prompt,
before the user requests. Typically RAG systems target to
use full available context length.

• For 4K context typical 3500 input tokens, 500 output
tokens

• What is RAG — NVIDIA blog

• Chat history: previous exchange of messages in the
conversation

This sentence costs +9 input tokens

This sentence costs +12 input tokens

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

Peak Requests Per Second

• Poisson distribution approximation

• One knows the average, but would like to know the peak

• Find 95th percentile: ChatGPT dialogue

from scipy.stats import poisson

Parameters

lambda_ = 64 # average number of requests per second

percentile = 0.95 # 95th percentile

Calculate the 95th percentile value

k_95th_percentile = poisson.ppf(percentile, lambda_)

print(k_95th_percentile) # 77, 20% difference

print(poisson.ppf(0.95, 7)) # 12, 71% difference

https://chat.openai.com/share/e8e1e163-d0d2-4763-9fcc-16fb460227f0

LLM Inference Requires Multiple GPUs
Tensor Parallelism (TP) – so how to split your neural network across several GPUs

• Tensor Parallelism (TP) can be used for LLM Inference. One model gets split across several GPUs. Heavily relies on data
exchange between GPUs.

• Lower latency, but lower throughput

• TP >= 2 required for bigger models like LLaMa-70B

• If TP>2 we strongly recommend NVLink-enabled servers for inference, such as HGX and DGX systems

• We normalize all the results for servers with 8 GPUs (even for L40s)

• (# of instances) * TP = 8

• 8 instances with TP1, 2 instances with TP4

GPU 1

GPU 2

GPU 3

Time =

TP8 Instance 1

TP4 In. 1 In. 2

TP2 In. 1 In. 2 In. 3 In. 4

TP1 In. 1 In. 2 In. 3 In. 4 In. 5 In. 6 In. 7 In. 8

Tools Available

Publicly Available Performance Benchmarking

• https://github.com/NVIDIA/TensorRT-LLM/tree/main/benchmarks/cpp — TensorRT-LLM C++

• TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT
engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also
contains components to create Python and C++ runtimes that execute those TensorRT engines.

• Some results: https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/performance.md

• https://github.com/triton-inference-server/client/blob/main/src/c%2B%2B/perf_analyzer/docs/llm.md

• Triton Performance Analyzer is CLI tool which can help you optimize the inference performance of models running on Triton
Inference Server by measuring changes in performance as you experiment with different optimization strategies.

https://github.com/NVIDIA/TensorRT-LLM/tree/main/benchmarks/cpp
https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/performance.md
https://github.com/triton-inference-server/client/blob/main/src/c%2B%2B/perf_analyzer/docs/llm.md

Inference Performance Exploration Tools

• Simpler, less precise, benchmarks-based https://nemo-inference-sizing.nvidia.com/ (to be published)

• Very precise, more complex, benchmarks + simulation: Nemo Inference Microservice (available Early Access)

https://nemo-inference-sizing.nvidia.com/ Nemo Inference Microservice

*name on the page will be updated

https://nemo-inference-sizing.nvidia.com/
https://developer.nvidia.com/nemo-microservices-early-access
https://nemo-inference-sizing.nvidia.com/
https://developer.nvidia.com/nemo-microservices-early-access

Demo of NeMo inference sizing

Example 1
Smaller model – for auxiliary task

• We are looking for a sizable
use case of Llama-7B. 128
in, 512 out.

• For input 128, output 512
we have 65.6 peak prompts
per second per one DGX
H100

• That’s 53.2 requests per
second on average

• That’s 1.5M requests per
working day (8 hours)

• 3 requests per person →
500k daily active users

• 192M input, 768M output
tokens per day

https://nemo-inference-sizing.nvidia.com/

https://nemo-inference-sizing.nvidia.com/

Example 2
Larger model (ChatGPT like)

• We are looking for a sizable
use case of Llama-70B.
128 in, 512 out.

• For input 128, output 512
we have 11.2 peak prompts
per second per one DGX
H100

• That’s 6.92 requests per
second on average

• That’s 200k requests per
working day (8 hours)

• 3 requests per person →
66k daily active users

• 25.6M input, 102M output
tokens per day

• $38.4 + $204 GPT 3.5
turbo per day (fair
comparison) =
$7.2K/month on OpenAI

https://nemo-inference-sizing.nvidia.com/

https://nemo-inference-sizing.nvidia.com/

Example 3
A100 FP16 vs H100 FP8

• H100 features a Transformer
Engine with FP8 precision
support

• For input 2048, output 128
and TP8, H100 with FP8
delivers x4 prompts per
second compared to A100
with FP16, for the same
latency

• Part of that increase is due to
the FP8 format and part due
to the better performance of
H100 vs A100

• Other efficient techniques like
pruning, distillation
or sparsification can increase
performance

https://nemo-inference-sizing.nvidia.com/

4x prompts per

second per 8 GPUs

https://nemo-inference-sizing.nvidia.com/

NeMo Inference Microservice Performance Tools

• Measure, Plan, Deploy

o Load Generators

▪ Concurrent Loadgen = MLPerf MultiStream Scenario or LLM Perf tool

▪ Poisson Loadgen = MLPerf Server Scenario

o Trace Analysis

▪ Collect runtime statistics from Load Generators

▪ Generate Visualizations of the collected statistics

o Performance Models

▪ Use collected statistic to build a predictive performance model

▪ Digital Twin of the Production Deployment

o Evaluate Scenario in Simulation

▪ Tweak arrival rates and/or input/output and evaluate the performance of the
virtual deployment.

▪ Simulation is accurate to within 10-15% for small models and to within
3-5% for large models

Rules of Thumb for Sizing

• We estimate the sizing based on NVIDIA SW stack: NeMo, TensorRT-LLM (=TRT-LLM) and Triton Inference Server

• For models greater than 13B, that need more than 1 GPU, prefer NVLink-enabled systems.

• In the streaming mode, when the words are returned one by one, first-token latency is determined by the input length.

• The cost and the latency are usually dominated by the number of output tokens

• Example below: H100 SXM, Llama 70B, BS 8, TP 4, FP 16.
Input of 3500 tokens takes the same amount of time as generating 99 tokens
(2.6 seconds each stage, 26.8 ms/generated token)

• However, generating is almost always faster than human reading speed

• Thus, input tokens are much cheaper

• Introducing latency limit can significantly decrease available throughput

• Larger models require more memory and have higher latency, scaling approximately with the model size.

• New apps should be developed in streaming mode . To introduce LLMs into the older apps, one may use sequential
mode.

• Locality of compute is not too important for the cloud deployments of the LLM.

• Consider cheapest deployment across the world due to latency in seconds

Input processing: 3500 tokens Generating 99 tokens out

Inference Containers

• NeMo Inference Microservice — fresh release

• Supports OpenAI-compatible API — killer feature

• Supports NeMo LLM Service compatible API

• Accelerated by TRT-LLM

• Triton + TRT-LLM

• Part of NVAIE and can be supported

• Works with HF models

• Open Source

Paper to Understand Inference
Chunked Prefill

• https://arxiv.org/pdf/2308.16369.pdf

https://arxiv.org/pdf/2308.16369.pdf

Prefill Is Compute Bound in FFN

df_measured['sequence_position'] = df_measured['input_len']*df_measured['batch_size']

Decoding Is Memory Bound in KV Cache
But not so straightforward

df_measured['sequence_position'] = (df_measured['input_len'] + (df_measured['output_len'] - 1)/2)*df_measured['batch_size']

Current Limitations and Extrapolations

• Extensive measurement are currently available only for NeMo Inference Container

• PyTriton + TRT-LLM Python Backend

• Only BF16 (expect approx. 30% improvement from switching to FP8 on H100 and L40s)

• Client-side batching

• We expect the in-flight batching results to be compatible with the results of the NeMo Inference Sizing Calculator
benchmarks

• We expect the throughput to be the same

• We expect the decoding latency to be the same

• We expect the prefill latency to be close to the measured latency of prefill batch size 1

• Results in significant improvement in first token latency

Call to Action
Use the Personal Checklist to understand your requirements

• Use the sizing checklist for your use cases

• Get a ballpark estimate of required HW using the calculator: https://nemo-inference-sizing.nvidia.com/ (when it gets
published)

• Need clarifications or help with sizing? Drop message to me and my colleague: Dmitry Mironov dmitrym@nvidia.com,
Sergio Perez sergiop@nvidia.com

Dmitry Mironov

dmitrym@nvidia.com

Sergio Perez

sergiop@nvidia.com

https://nemo-inference-sizing.nvidia.com/
mailto:dmitrym@nvidia.com
mailto:sergiop@nvidia.com
mailto:dmitrym@nvidia.com
mailto:sergiop@nvidia.com

Inference Resources

• http://nemo-inference-sizing.nvidia.com/

• NVIDIA NeMo Microservices Early Access

• OpenAI pricing + token counter

• What is RAG — NVIDIA blog

• Mastering LLM Techniques: Inference Optimization
— NVIDIA Blog

https://developer.nvidia.com/nemo-microservices-early-access
https://developer.nvidia.com/nemo-microservices-early-access
https://openai.com/pricing
https://platform.openai.com/tokenizer
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

	Slide 1
	Slide 2: About Us
	Slide 3
	Slide 4: Customer Use Case Example
	Slide 5: Customer Use Case Example
	Slide 6: Customer Use Case Example
	Slide 7: Customer Use Case Example
	Slide 8: Two Stages of LLM Execution
	Slide 9: The Two Things To Care About
	Slide 10: Where?
	Slide 11: How?
	Slide 12: Online Streaming vs Sequential
	Slide 13: In This Presentation
	Slide 14
	Slide 15: Questions for a Sizing Use Case
	Slide 16: Which Model?
	Slide 17: Input Length
	Slide 18: Peak Requests Per Second
	Slide 19: LLM Inference Requires Multiple GPUs
	Slide 20
	Slide 21: Publicly Available Performance Benchmarking
	Slide 22: Inference Performance Exploration Tools
	Slide 23
	Slide 24: Example 1
	Slide 25: Example 2
	Slide 26: Example 3
	Slide 27: NeMo Inference Microservice Performance Tools
	Slide 28: Rules of Thumb for Sizing
	Slide 29: Inference Containers
	Slide 30: Paper to Understand Inference
	Slide 31: Prefill Is Compute Bound in FFN
	Slide 32: Decoding Is Memory Bound in KV Cache
	Slide 33: Current Limitations and Extrapolations
	Slide 34: Call to Action
	Slide 35: Inference Resources
	Slide 36

