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Sizing for Inference can get a bit complicated

Inference performance tools to help you are emerging 

Short summary of how to think about a problem and 

live demo

Agenda



Customer Use Case Example
Challenges of sizing

Customers Support 

Tickets

RAG

Direct 

Feedback

Human 

Intervention
Agent RAG

Public 

& User-specific DB

Full DB, available 

to the agent
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Customer Use Case Example
Challenges of sizing

How many systems do 

we need to buy for 

this?

How long is a piece of 

string?

• 3500 words in, 500 words out

• NeMo 43B GPT

• First token latency limit 3s

• Max 31 requests (=prompts) per second

• The customer needs 13 DGX H100 systems
• DGX H100 can serve 2.4 requests per second

• First token latency 2606 ms (prefill) is within the limit specified

Inter-token latency 21.4 ms/generated token

• Generation latency of 500 tokens = 21.4 * 500 = 10 700 ms = 10.7 s



Two Stages of LLM Execution
Prefill vs Decoding

• Prefill = time to first token (⁓word)

• Loading the user prompt into the system

• From the request reception to the first token

• Depends only on the number of input tokens

• Populate KV-cache for all the tokens from the prompt.

• Compute-bound for most of the reasonable prompt lengths

• Decoding = inter-token latency

• Generating the response token by token, word by word

• Inter-token latency depends on the total token number, both 
input and output tokens.

• Usually memory-bound

Prefill, first-response Decoding

User: generate me a song. AI: Could you please me with some specifics for your

prompt

Prefill: 1.14s, 5 input tokens, 1 output token

Decoding: 1.62s, 33 output tokens

user prompt



The Two Things To Care About
Where and how do we execute inference?

On-prem Cloud Online Offline

Where? How?



Where?
Significant impact of deployment location

On-prem Cloud

• Fixed Capacity: you need to understand 

the size for the maximum simultaneous 

load

• Pricing model: per peak capacity

• Variable Capacity: APIs hide capacity 

concerns – in reality, similar limitations 

apply (GPU shortage)

• Pricing model: per token• Minimal 

Capacity + 

Autoscaling 

for bursts



How?
Significant impact of inference strategy

Online Offline

• Complexity: it matters to people how quickly they 

will get their response

• Imposing latency requirement significantly 

decreases available throughput. Need to balance 

between throughput and latency

• Simplest execution model

• Throughput, throughput, throughput: 

maximum GPU utilization, maximum batch 

size

Fun fact: Fast human reading speed is 90 ms/token (=500 

words/minute at 0.75 tokens/word) (avg is 200 ms/token)



Optional sequential 

request to LLM:

“What should a 

database query look 

like for this prompt” 

DB Query Run, 

Building the final 

prompt

Streaming request 

to the LLM, if the 

app allows that.

Sequential 

otherwise.

Online Streaming vs Sequential
Two facets of latency

• Streaming, when it is OK to give people answer 
one token at a time.

• In this situation only the TIME-TO-FIRST-TOKEN
matters (as we generate text faster than people 
can read).

• One needs to develop the app streaming 
capabilities. 

• Simpler to satisfy real-time latency requirements

• Can be implemented only in the last step of the 
pipeline

• Sequential, when one waits for the full response

• Say you want to check whether the user question is 
not toxic BEFORE you start answering.

• In this case END-TO-END latency/time to last token 
matters

• Legacy apps can be simply updated with sequential 
mode

• Latency requirements are too restricting for 
throughput



In This Presentation
We focus on the most complicated part of the problem

On-prem Cloud Online Offline

Where? How?



Sizing One Use Case



Questions for a Sizing Use Case

1. What model are you planning to use?

2. What is the average number of tokens in the prompt to your LLM (Length of input)?

• For English one token is approximately 0.75 of a word.

• Make sure to include system prompt.

3. What is the average number of tokens in your LLM output?

4. How many requests per second should your system process at its peak?

5. What is your latency limit? First-token? Last-token?

! !



Which Model?
The most popular requests

• Typically, we get asked about LLaMa 2 family of the models:

• Free for research and commercial use

• Supported by NVIDIA SW stack, including NeMo

• The bigger the model, the more resources it needs for inference

• The bigger the model the better the accuracy

• Very roughly the resource amount scales with the model size

• If considering LLaMa 7B and 13B parameters, see also NVIDIA Nemotron-3 8B Family of models: blog

= =

https://developer.nvidia.com/blog/nvidia-ai-foundation-models-build-custom-enterprise-chatbots-and-co-pilots-with-production-ready-llms/


Input Length
There's a maximum budget of tokens to pass into the model

• Most of the models support up to 4096 tokens.

• Context window = input tokens + output tokens

• Llama2 supports 4096 context window

• New models support even larger context windows

• Everything counts so be careful:

• System prompt (a.k.a custom instructions): instructions 
you give to the model for every “dialogue”. Make sure to 
include them into the input token count as shown in 
example on the right.

• Retrieved documents (a.k.a Retrieval Augmented 
Generation, RAG). For RAG pipelines key paragraphs from 
the internal document storage are added to the prompt, 
before the user requests. Typically RAG systems target to 
use full available context length.

• For 4K context typical 3500 input tokens, 500 output 
tokens

• What is RAG — NVIDIA blog

• Chat history: previous exchange of messages in the 
conversation

This sentence costs +9 input tokens

This sentence costs +12 input tokens

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/


Peak Requests Per Second

• Poisson distribution approximation

• One knows the average, but would like to know the peak

• Find 95th percentile: ChatGPT dialogue

from scipy.stats import poisson

# Parameters

lambda_ = 64  # average number of requests per second

percentile = 0.95  # 95th percentile

# Calculate the 95th percentile value

k_95th_percentile = poisson.ppf(percentile, lambda_)

print(k_95th_percentile) # 77, 20% difference

print(poisson.ppf(0.95, 7)) # 12, 71% difference

https://chat.openai.com/share/e8e1e163-d0d2-4763-9fcc-16fb460227f0


LLM Inference Requires Multiple GPUs
Tensor Parallelism (TP) – so how to split your neural network across several GPUs

• Tensor Parallelism (TP) can be used for LLM Inference. One model gets split across several GPUs. Heavily relies on data 
exchange between GPUs.

• Lower latency, but lower throughput

• TP >= 2 required for bigger models like LLaMa-70B

• If TP>2 we strongly recommend NVLink-enabled servers for inference, such as HGX and DGX systems

• We normalize all the results for servers with 8 GPUs (even for L40s)

• (# of instances) * TP = 8

• 8 instances with TP1, 2 instances with TP4

GPU 1

GPU 2

GPU 3

Time   =

TP8 Instance 1

TP4 In. 1 In. 2

TP2 In. 1 In. 2 In. 3 In. 4

TP1 In. 1 In. 2 In. 3 In. 4 In. 5 In. 6 In. 7 In. 8



Tools Available



Publicly Available Performance Benchmarking

• https://github.com/NVIDIA/TensorRT-LLM/tree/main/benchmarks/cpp — TensorRT-LLM C++

• TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT 
engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also 
contains components to create Python and C++ runtimes that execute those TensorRT engines.

• Some results: https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/performance.md

• https://github.com/triton-inference-server/client/blob/main/src/c%2B%2B/perf_analyzer/docs/llm.md

• Triton Performance Analyzer is CLI tool which can help you optimize the inference performance of models running on Triton 
Inference Server by measuring changes in performance as you experiment with different optimization strategies.

https://github.com/NVIDIA/TensorRT-LLM/tree/main/benchmarks/cpp
https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/performance.md
https://github.com/triton-inference-server/client/blob/main/src/c%2B%2B/perf_analyzer/docs/llm.md


Inference Performance Exploration Tools

• Simpler, less precise, benchmarks-based https://nemo-inference-sizing.nvidia.com/ (to be published)

• Very precise, more complex, benchmarks + simulation: Nemo Inference Microservice (available Early Access)

https://nemo-inference-sizing.nvidia.com/ Nemo Inference Microservice

*name on the page will be updated

https://nemo-inference-sizing.nvidia.com/
https://developer.nvidia.com/nemo-microservices-early-access
https://nemo-inference-sizing.nvidia.com/
https://developer.nvidia.com/nemo-microservices-early-access


Demo of NeMo inference sizing



Example 1
Smaller model – for auxiliary task

• We are looking for a sizable 
use case of Llama-7B. 128 
in, 512 out.

• For input 128, output 512 
we have 65.6 peak prompts 
per second per one DGX 
H100

• That’s 53.2 requests per 
second on average

• That’s 1.5M requests per 
working day (8 hours)

• 3 requests per person →
500k daily active users

• 192M input, 768M output 
tokens per day

https://nemo-inference-sizing.nvidia.com/ 

https://nemo-inference-sizing.nvidia.com/


Example 2
Larger model (ChatGPT like)

• We are looking for a sizable 
use case of Llama-70B. 
128 in, 512 out.

• For input 128, output 512 
we have 11.2 peak prompts 
per second per one DGX 
H100

• That’s 6.92 requests per 
second on average

• That’s 200k requests per 
working day (8 hours)

• 3 requests per person →
66k daily active users

• 25.6M input, 102M output 
tokens per day

• $38.4 + $204 GPT 3.5 
turbo per day (fair 
comparison) = 
$7.2K/month on OpenAI

https://nemo-inference-sizing.nvidia.com/ 

https://nemo-inference-sizing.nvidia.com/


Example 3
A100 FP16 vs H100 FP8

• H100 features a Transformer 
Engine with FP8 precision 
support

• For input 2048, output 128 
and TP8, H100 with FP8 
delivers x4 prompts per 
second compared to A100 
with FP16, for the same 
latency

• Part of that increase is due to 
the FP8 format and part due 
to the better performance of 
H100 vs A100

• Other efficient techniques like 
pruning, distillation 
or sparsification can increase 
performance

https://nemo-inference-sizing.nvidia.com/ 

4x prompts per

second per 8 GPUs

https://nemo-inference-sizing.nvidia.com/


NeMo Inference Microservice Performance Tools

• Measure, Plan, Deploy

o Load Generators

▪ Concurrent Loadgen = MLPerf MultiStream Scenario or LLM Perf tool

▪ Poisson Loadgen = MLPerf Server Scenario

o Trace Analysis

▪ Collect runtime statistics from Load Generators

▪ Generate Visualizations of the collected statistics

o Performance Models

▪ Use collected statistic to build a predictive performance model

▪ Digital Twin of the Production Deployment

o Evaluate Scenario in Simulation

▪ Tweak arrival rates and/or input/output and evaluate the performance of the 
virtual deployment.

▪ Simulation is accurate to within 10-15% for small models and to within 
3-5% for large models



Rules of Thumb for Sizing

• We estimate the sizing based on NVIDIA SW stack: NeMo, TensorRT-LLM (=TRT-LLM) and Triton Inference Server

• For models greater than 13B, that need more than 1 GPU, prefer NVLink-enabled systems.

• In the streaming mode, when the words are returned one by one, first-token latency is determined by the input length.

• The cost and the latency are usually dominated by the number of output tokens

• Example below: H100 SXM, Llama 70B, BS 8, TP 4, FP 16. 
Input of 3500 tokens takes the same amount of time as generating 99 tokens
(2.6 seconds each stage, 26.8 ms/generated token)

• However, generating is almost always faster than human reading speed

• Thus, input tokens are much cheaper

• Introducing latency limit can significantly decrease available throughput

• Larger models require more memory and have higher latency, scaling approximately with the model size.

• New apps should be developed in streaming mode . To introduce LLMs into the older apps, one may use sequential 
mode.

• Locality of compute is not too important for the cloud deployments of the LLM.

• Consider cheapest deployment across the world due to latency in seconds

Input processing: 3500 tokens Generating 99 tokens out



Inference Containers

• NeMo Inference Microservice — fresh release

• Supports OpenAI-compatible API — killer feature

• Supports NeMo LLM Service compatible API

• Accelerated by TRT-LLM 

• Triton + TRT-LLM

• Part of NVAIE and can be supported

• Works with HF models

• Open Source



Paper to Understand Inference
Chunked Prefill

• https://arxiv.org/pdf/2308.16369.pdf

https://arxiv.org/pdf/2308.16369.pdf


Prefill Is Compute Bound in FFN

df_measured['sequence_position'] = df_measured['input_len']*df_measured['batch_size']



Decoding Is Memory Bound in KV Cache
But not so straightforward 

df_measured['sequence_position'] = (df_measured['input_len'] + (df_measured['output_len'] - 1)/2 )*df_measured['batch_size']



Current Limitations and Extrapolations

• Extensive measurement are currently available only for NeMo Inference Container

• PyTriton + TRT-LLM Python Backend

• Only BF16 (expect approx. 30% improvement from switching to FP8 on H100 and L40s)

• Client-side batching

• We expect the in-flight batching results to be compatible with the results of the NeMo Inference Sizing Calculator 
benchmarks

• We expect the throughput to be the same

• We expect the decoding latency to be the same

• We expect the prefill latency to be close to the measured latency of prefill batch size 1

• Results in significant improvement in first token latency



Call to Action
Use the Personal Checklist to understand your requirements

• Use the sizing checklist for your use cases

• Get a ballpark estimate of required HW using the calculator: https://nemo-inference-sizing.nvidia.com/ (when it gets 
published) 

• Need clarifications or help with sizing? Drop message to me and my colleague: Dmitry Mironov dmitrym@nvidia.com, 
Sergio Perez sergiop@nvidia.com

Dmitry Mironov

dmitrym@nvidia.com

Sergio Perez

sergiop@nvidia.com 

https://nemo-inference-sizing.nvidia.com/
mailto:dmitrym@nvidia.com
mailto:sergiop@nvidia.com
mailto:dmitrym@nvidia.com
mailto:sergiop@nvidia.com


Inference Resources

• http://nemo-inference-sizing.nvidia.com/

• NVIDIA NeMo Microservices Early Access

• OpenAI pricing + token counter

• What is RAG — NVIDIA blog

• Mastering LLM Techniques: Inference Optimization
— NVIDIA Blog

https://developer.nvidia.com/nemo-microservices-early-access
https://developer.nvidia.com/nemo-microservices-early-access
https://openai.com/pricing
https://platform.openai.com/tokenizer
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
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