
1

Introduction to CUDA Performance
Optimization
Athena Elafrou, Guillaume Thomas Collignon, NVIDIA DevTech Compute

GPU Technology Conference, March 18th 2024

2

• GPU Architecture and CUDA Programming Basics

• Fundamental Performance Optimizations

• Summary

Agenda

3

GPU Architecture and CUDA
Programming Basics

4

GPU Overview
NVIDIA H200 SXM

132 SMs
4th Gen Tensor Cores

141 GB HBM3e,
 4.8 TB/s

50 MB L2

PCIe Gen 5,
 128 GB/s

bidirectional

4th Gen NVLink,
900 GB/s

bidirectional

55

Streaming Multiprocessor (SM)

• 128 FP32 cores

• 64 FP64 cores

• 64 INT32 cores

• 4 mixed-precision Tensor Cores

• 16 special function units (transcendentals)

• 4 warp schedulers

• 32 LD/ST units

• 64K 32-bit registers

• 256 KiB unified L1 data cache and shared memory

• Tensor Memory Accelerator (TMA)

Hopper architecture

6

• Akin to a single-instruction multiple-data (SIMD) array processor per
Flynn’s taxonomy combined with fine-grained multithreading.

• SIMT architectures expose a large set of hardware threads, which is
partitioned into groups called warps.

• Interleave warp execution to hide latencies.

• Execution context for each warp is kept on-chip for fast interleaving.

• When scheduled, each thread of a warp executes on a given lane of a
SIMD functional unit.

• Each SM sub-partition can be thought of as a SIMT engine that creates,
manages, schedules, and executes warps of 32 parallel threads.

SIMT Architecture
Single-Instruction, Multiple-Thread

SIMD back-end

Warps available for

scheduling

Warp 0

Warp 1
…

Warp N

7

SIMT Architecture
Warp divergence

• If threads in a warp diverge via a conditional branch, the warp
executes every branch path.

• Full efficiency is realized when all 32 threads of a warp agree
on their execution path.

• Aka they are converged.

T T F T F F F F

x x x x x

x x x

x x x x x

x x x x x

x x x

Time

if (true) {
 instruction 1
 instruction 2
 instruction 3
} else {
 instruction 4
 instruction 5
}

Thread IDs

0 1 2 3 4 5 6 7

8

SIMT Architecture
Independent Thread Scheduling

if (thread_id < 4) {
 A;
 B;
} else {
 X;
 Y;
}
Z; A;

X;

B; Z;

Y; Z;

A;

X;

B; Z;

Y;

sy
n
c

• Individual threads in a warp have their own program counter and call stack and are therefore free to execute
independently.

Do not assume threads in a warp
are automatically re-converged

after a conditional or at any point!

The compiler might sync to
enforce re-convergence for

better performance.

Time

9

CUDA Programming Model
Single-Program Multiple-Data

• SIMT instructions specify the execution of a single thread.

• A SIMT kernel is launched on many threads that execute in
parallel.

• Threads use their thread index to work on disjoint data or to
enable different execution paths.

• Three key software abstractions enable efficient
programming through the CUDA programming model:

• a hierarchy of thread groups,

• memory spaces, and

• synchronization.

int i = my_global_thread_id();
 if (i < N) c[i] = a[i] + b[i];

0 1 2 N-1 N…Thread IDs:

for (int i = 0; i < N; i++) {
 c[i] = a[i] + b[i];

 }

Single-threaded CPU vector addition

GPU vector addition

10

Thread Hierarchy

• A CUDA kernel is launched on a grid of
thread blocks, which are completely
independent.

• Thread blocks are executed on SMs.

• Several concurrent thread blocks can reside
on an SM.

• Thread blocks do not migrate.

• Each block can be scheduled on any of the
available SMs, in any order, concurrently or in
series.

• Individual threads execute on scalar CUDA
cores.

Thread

Thread Block

Thread Block

Thread Block

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

SM

Device

Scalar CUDA core

CUDA/Software Hardware

11

Grid

Thread Block Clusters

• For Hopper GPUs, CUDA introduced an optional level in the thread hierarchy called Thread Block Clusters.

• Thread blocks in a cluster are guaranteed to be concurrently scheduled and enable efficient cooperation and data
sharing for threads across multiple SMs.

• For more information on this topic visit GTC session [S62192]: “Advanced Performance Optimization in CUDA”.

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block Cluster Thread Block Cluster

12

Thread Hierarchy
What about warps?

• At runtime, a block of threads is divided into warps for SIMT execution.

• The way a block is partitioned into warps is always the same.

• Each warp contains threads of consecutive, increasing thread IDs with the first warp containing thread 0.

• The total number of warps in a block is defined as:

• 𝑐𝑒𝑖𝑙
𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘

𝑤𝑎𝑟𝑝 𝑠𝑖𝑧𝑒
, 1

32 threads

32 threads

32 threads

32 threads

Thread Block

SM

13

Thread Hierarchy
Thread block sizing

• Let’s say we want to add two vectors of size N = 1000.

• Scenario #1: 1-D grid of 10 1-D blocks of size 100.

• Scenario #2: 1-D grid of 8 1-D blocks of size 128.

• Which option is better in terms of thread resource utilization?

14

Block 0

32 threads

Block 0

32 threads 32 threads 32 threads 4

Block 0

Thread Hierarchy
Thread block sizing

• Let’s say we want to add two vectors of size N = 1000.

• Scenario #1: 1-D grid of 10 1-D blocks of size 100.

• Scenario #2: 1-D grid of 8 1-D blocks of size 128.

• Which option is better in terms of thread resource utilization?

32 threads 32 threads 32 threads 4

Block 9

32 threads 32 threads 32 threads 4

…

Scenario #1:
3 full warps and 1 warp with 4 active threads per block

Average thread utilization = 78.125%

32 threads 32 threads 32 threads

Block 0

32 threads 32 threads 32 threads

Block 7

32 threads 32 threads 32 threads

…

Scenario #2:
4 full warps per block, except last block

Average thread utilization = 97.656%

32 threads

8

15

Shared/L1

Registers

• Per-thread registers.

• Lowest possible latency.

• Per-thread local memory.

• Private storage.

• Slowest access.

• Per-block shared memory.

• Visible by all threads in a block.

• Can be used to exchange data between
threads in a thread block.

• Very fast access.

• Global memory.

• Visible by all threads in a grid.

• Slowest access.

Memory Hierarchy

L2

DRAM

Hardware CUDA/Software

Thread

Thread Block

Thread Block

Thread Block

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Registers

Shared
Memory

Global Memory

SM

Shared/L1

Registers

Local Memory

16

Synchronization
Barriers

• Grid boundary.

• Kernel completion.

• grid_group::sync() via Cooperative Groups API

• Requires the kernel to be launched via the
cudaLaunchCooperativeKernel() API

• Slow! Avoid unless necessary.

• Thread-block boundary.

• __syncthreads()
• thread_block::sync() via Cooperative Groups API

• Fast! The most common synchronization level.

• Warp or sub-warp boundary.

• __syncwarp()
• coalesced_group::sync() via Cooperative Groups API

• Very fast!

Thread Block

Thread Block

Thread Block

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

CUDA/Software

warp = 32 threads

barrier

barrier

barrier

17

Unified Memory

Atomics
Memory spaces

• Read-modify-write operations on 16–, 32-, 64- or 128-bit
words.

• Available as CUDA primitives or C++ atomics through
libcu++ extended API.

• Shared memory atomics.

• Global memory atomics.

• Facilitated by special hardware in the L2 cache.

• Unified memory atomics.

CUDA/Software

Thread Block

Thread Block

Grid

Thread Block Thread Block Thread Block

Shared Memory

Global Memory

CPU GPU 0 GPU 1

18

Thread Scopes

• To account for non-uniform thread synchronization
costs, CUDA has introduced the notion of thread scopes.

• A thread scope specifies which threads can
communicate with each other using a primitive such as
an atomic or a barrier.

• Thread scopes are exposed to the programmer in 3 ways:

• PTX

• CUDA Math API

• CUDA C++

• Always use the narrowest scope that ensures correctness
of your application.

• More on thread scopes in the GTC session [S62192]:
“Advanced Performance Optimization in CUDA”.

Thread Block

Thread Block

Grid

Thread Block

Thread Block

thread_scope_thread

thread_scope_block

thread_scope_device

thread_scope_system

GPU 0
threads

GPU 1
threads

CPU
threads

Thread Block

Thread

19

Fundamental Performance
Optimizations

20

Little’s Law
For escalators

Our escalator parameters:

• 1 person per step

• A step arrives every 2 seconds

• Bandwidth: 0.5 person/s

• 20 steps tall

• Latency = 40 seconds

One person in flight?

Throughput = 0.025 person/s

21

Little’s Law
For escalators

Our escalator parameters:

• 1 person per step

• A step arrives every 2 seconds

• Bandwidth: 0.5 person/s

• 20 steps tall

• Latency = 40 seconds

How many persons do we need in-flight to

saturate bandwidth?

 Concurrency = Bandwidth x Latency

 = 0.5 persons/s x 40 s

 = 20 persons

22

Little’s Law
For GPUs

• How to maximize performance?

1. Saturate compute units.

2. Saturate memory bandwidth.

• Need to hide the corresponding latencies to achieve this.

• Compute latencies.

• Memory access latencies.

• Latencies can be hidden by having more instructions in flight.

Concurrency = Bandwidth x Latency =

8 x 24 operations in-flight

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 Latency = 24 cycles

8 FP32 ops per cycle

23

Hiding Latencies
Increasing in-flight instructions

• Two ways to increase in-flight instructions:

1. Improve Instruction-Level Parallelism (ILP).

• Higher ILP -> more independent instructions per thread.

2. Improve Thread-Level Parallelism (TLP).

• Higher TLP -> more threads -> more independent
instructions per kernel.

x = x + a
y = x + a
z = y + a

x = x + b
y = y + b
z = z + b

Independent Instructions

Thread

In
st

ru
c
ti

o
n
s x = x + a

x = x + b

Thread 0

y = y + a

y = y + b

Thread 1

In
st

ru
c
ti

o
n
s

2424

Instruction Issue

• Assumptions

• LDG/STG

• Dependent Issue Rate: 1000 cycles

• Issue Rate: 1 cycle

• FP32 pipeline

• Dependent Issue Rate: 4 cycles

• Issue Rate: 2 cycles

• 1 available warp per scheduler

__global__
void kernel(const float * __restrict__ a,
 const float * __restrict__ b,
 float * __restrict__ c)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 c[idx] += a[idx] * b[idx];
}

load a
load b
load c

fma c, a, b

store c

12 bytes in-flight

Total cycles = 1006
4 bytes in-flight

N N+1 N+2 N+1002 N+1006

LDG LDG LDG (stall) FFMA (stall) STG

Cycle

2525

load a[i1]
load b[i1]
load c[i1]
load a[i2]
load b[i2]

fma c[i1], a[i1], b[i1]
store c[i1]
load c[i2]

fma c[i2], a[i2], b[i2]
store c[i2]

__global__
void kernel(const float * __restrict__ a,

 const float * __restrict__ b,
 float * __restrict__ c)

{
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int stride = blockDim.x * gridDim.x;

 #pragma unroll 2
 for (int i = 0; i < 2; i++) {
 const int idx = tid + i * stride;

 c[idx] += a[idx] * b[idx];
 }
}

Increasing ILP
Computing 2 elements per thread – version #1

N N+1 N+2 N+3 N+4 N+1002 N+1006

LDG LDG LDG LDG LDG (stall) FFMA (stall) STG

N+1007 N+2007 N+2011

LDG (stall) FFMA (stall) STG

Cycle

Total cycles = 2011

2x the amount of work in 2x more cycles!

• Every thread computes 2 elements using a grid stride.

20 bytes in-flight

4 bytes in-flight

8 bytes in-flight

2626

#define THREAD_BLOCK_DIM 128

__global__
void kernel(const float * __restrict__ a,

 const float * __restrict__ b,
 float * __restrict__ c)

{
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int off = 2 * THREAD_BLOCK_DIM * blockIdx.x + threadIdx.x;

 #pragma unroll 2
 for (int i = 0; i < 2; i++) {
 const int idx = off + i * THREAD_BLOCK_DIM;
 c[idx] += a[idx] * b[idx];
 }
}

Increasing ILP
Computing 2 elements per thread – version #2

load a[i1]
load b[i1]
load c[i1]
load a[i2]
load b[i2]
load c[i2]

fma c[i1], a[i1], b[i1]
fma c[i2], a[i2], b[i2]

store c[i1]
store c[i2]

N N+1 N+2 N+3 N+4 N+5 N+1002

LDG LDG LDG LDG LDG LDG (stall) FFMA (stall)

N+1004 N+1006 N+1008

FFMA (stall) STG (stall) STG

Cycle

Total cycles = 1008

2x the amount of work in the ~same number

of cycles!

• Every thread computes 2 elements using a constant
block stride.

24 bytes in-flight

8 bytes in-flight

2727

Warp Scheduling

• 4 warp schedulers per SM.

• Each scheduler manages a pool of warps.

• Hopper: 16 warp slots per scheduler.

• Each scheduler can issue 1 warp per cycle.

Hopper SM

28

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Active Warp States:

Selected
Eligible that is selected to issue

an instruction.

Eligible
Ready to issue an instruction.

Warps occupying

scheduler slots are

considered active

29

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Active Warp States:

Selected
Eligible that is selected to issue

an instruction.

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

30

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible that is selected to issue

an instruction

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

2

Each cycle: out of all eligible warps, select one to issue on that cycle

Active Warp States:

31

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible that is selected to issue

an instruction

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

2

N+1

Warp selected at cycle N is not eligible in cycle N+1.
E.g., instructions with longer latencies.

Active Warp States:

32

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible that is selected to issue

an instruction

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

2

N+1

No eligible warps! Issue slot unused.

Active Warp States:

33

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible that is selected to issue

an instruction

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

2

N+1 N+2

Warp at slot 0 becomes eligible.

Active Warp States:

34

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible that is selected to issue

an instruction

Eligible
Ready to issue an instruction.

Cycle:

Issue slot:

N

2

N+1 N+2

Warp at slot 0 is selected.

0

Active Warp States:

35

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible warp that is selected to

issue an instruction.

Eligible
Active warp that is not stalled.

Cycle:

Issue slot:

N

2

N+1 N+2

No eligible warps! Issue slot unused.

N+3

0

Active Warp States:

36

Stalled
Waiting on:

 an instruction fetch,

 a memory dependency,

 an execution dependency, or

 a synchronization barrier.

Warp Scheduling
Mental model

N

…

5

4

3

2

1

0
W

a
rp

 S
lo

ts

Selected
Eligible warp that is selected to

issue an instruction.

Eligible
Active warp that is not stalled.

Cycle:

Issue slot:

N

2

N+1 N+2

Having more active warps would help reduce idle issue slots and hide

latencies of stalled warps.

N+3

0

N+4 N+5 N+6

Active Warp States:

37

How to Increase Active Warps?
Occupancy

• There is a maximum number of warps which can be concurrently active on an SM.

• Device (depends on compute capability of the GPU)

• Achievable (depends on kernel implementation + compiler)

• Achieved (depends mostly on the grid size)

• Occupancy of a CUDA kernel may be limited by:

• Register usage

• SM registers are partitioned among threads.

• Shared memory usage

• SM shared memory is partitioned among thread blocks.

• Thread block size

• Threads are allocated at thread block granularity.

𝑶𝒄𝒄𝒖𝒑𝒂𝒏𝒄𝒚 =
𝑨𝒄𝒉𝒊𝒆𝒗𝒂𝒃𝒍𝒆 # 𝒂𝒄𝒕𝒊𝒗𝒆 𝒘𝒂𝒓𝒑𝒔 𝒑𝒆𝒓 𝑺𝑴

𝑫𝒆𝒗𝒊𝒄𝒆 # 𝒂𝒄𝒕𝒊𝒗𝒆 𝒘𝒂𝒓𝒑𝒔 𝒑𝒆𝒓 𝑺𝑴

Analyze the
occupancy of CUDA
kernels with NVIDIA

Nsight Compute!

38

Occupancy Limiters
Registers

• Register usage: compile with --ptxas-options=-v
• Reports registers per thread

• The maximum number of registers per thread can be set manually:

• At compile time on a per-file basis using the --maxrregcount flag of nvcc
• Per-kernel using the __launch_bounds__ qualifier

• Hopper has 64K (65536) registers per SM

• Allocated in fixed-size chunks of 256 registers

• Example:

• Kernel uses 63 registers per thread

• Registers per warp = 63 * 32 = 2016

• Registers allocated per warp = 2048

• Achievable active warps per SM = 65536 / 2048 = 32

• Occupancy = 32 / 64 * 100 = 50%

• Hopper supports up to 64 warps per SM

39

Occupancy Limiters
Shared memory

• Shared memory usage: compile with --ptxas-options=-v.

• Reports static shared memory usage per thread block.

• Hopper has 228 KiB of shared memory.

• 1KiB per thread block is reserved for system use.

• With opt-in using dynamic shared memory.

• Example:

• Kernel uses 17408 bytes of shared memory per 128-thread block.

• Blocks per SM = 233472 / (17408 +1024) = 12.66

• Achievable active warps per SM = 12 * 128 / 32 = 48

• Occupancy = 48 / 64 * 100 = 75%

• Hopper supports up to 64 warps per SM.

40

Occupancy Limiters
Thread block size

• Thread block size is a multiple of warp size (32).

• Even if you request fewer threads, HW rounds up.

• Each thread block can have a maximum size of 1024.

• Each SM can have up to 64 warps, 32 blocks and 2048 threads (Hopper).

Block Size

Active

threads

per SM

Active

Warps per

SM

Active

Warps per

Block

Active

Blocks per

SM

Occupancy

(%)

32 1024 32 1 32 50

64 2048 64 2 32 100

256 2048 64 8 8 100

512 2048 64 16 4 100

768 1536 48 24 2 75

1024 2048 64 32 2 100

41

ILP vs TLP for Hiding Latencies
Computing c = c + a * b

• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^28

• Datatype = float

• Baseline thread block size = 32 (50% occupancy)

• Experiment #1: increase occupancy

• Thread block size = 64 (100% occupancy)

• Experiment #2: increase ILP by computing more elements per thread

• Elements per thread = 2, 4

Implementation
Elements per

Thread

Thread Block

Size

Main Memory

Bandwidth

Utilization (%)

SM Occupancy

(%)
GPU Time (ms)

Baseline 1 32 25 50 5.0

Experiment #1 1 64 51 100 2.5

Experiment #2 2 32 51 50 2.5

Experiment #2 4 32 82 50 1.6

42

What Occupancy Do I Need?
General guidelines

Fewer threads per SM.

More resources per thread.

Enough instruction-level parallelism

or GPU will starve!

More threads per SM.

Fewer registers per thread.

Rely on thread parallelism

to hide latencies!

Low Occupancy High Occupancy

+

+

-

-

Complex algorithms Simple algorithms

Rule of thumb: Try to maximize occupancy.

But some algorithms will run better at low occupancy.

More registers and shared memory can allow higher data reuse, higher ILP, higher performance.

Registers per thread and shared memory

Occupancy

43

Maximizing Memory Throughput

44

Memory Hierarchy
NVIDIA H200 SXM

Register File (64K 32-bit registers per SM)

Unified Shared Memory / L1 Cache (228 KiB per SM, variable split)

HBM3e (141 GB)

L2 Cache (50 MiB)

4.8 TB/s

Shared/L1

Registers

L2

DRAM

SM

Shared/L1

Registers

45

Why Do GPUs Have Caches?

• 100s ~ 1000s of threads sharing the L1 and ~100000s of threads sharing the L2.

• L1, L2 capacity per thread is relatively small.

Caches on GPUs are mostly useful for:

• “Smoothing” irregular, misaligned access patterns.

• Caching common data accessed by multiple threads.

• Faster register spills, local memory.

• Faster atomics.

What about cache blocking?

• L2 cache blocking may be feasible.

• For an example of efficient use of L2 cache blocking, see [S62192]: “Advanced Performance Optimization in CUDA”.

46

Memory Transactions
Cache lines and sectors

• Minimum memory access granularity: 32 bytes = 1 sector

• L1 to L2: 1 sector

• L2 to Global: 2 sectors (default)

• User can set a preferred granularity with cudaDeviceSetLimit() and cudaLimitMaxL2FetchGranularity.

• Only a hint though!

• Cache line size: 128 bytes = 4 sectors

• Cache ”management” granularity = 1 cache line

• Coalescing of requests.

• Evictions.

47

Memory Reads & Writes

Reads

Check if data is in L1 (if not, check L2)

Check if data is in L2 (if not, get from DRAM)

Unit of data moved: full sector

Writes

L1 is write-through: update both L1 and L2

L2 is write back: flush data to DRAM only when needed

Unit of data moved: partial sector*

* Depends on whether ECC is enable/disabled.

Shared/L1

Registers

L2

DRAM

SM

Shared/L1

Registers

48

Global Memory Access Patterns
Aligned and sequential

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

4 sectors

COALESCED!

49

Global Memory Access Patterns
Aligned and sequential

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

8-byte element access

8 sectors

COALESCED!

50

Global Memory Access Patterns
Aligned and non-sequential

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

4 sectors

COALESCED!

51

Global Memory Access Patterns
Mis-aligned and sequential

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

5 sectors

52

Global Memory Access Patterns
Mis-aligned and sequential

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

5 sectors
WARP

0 31

53

Global Memory Access Patterns
Same address

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

1 sector

54

Global Memory Access Patterns
Aligned and strided

0 32 64 96 128 160 192 224 256 288 320 352

Memory Addresses

WARP

0 31

4-byte element access

32 sectors

5555

Impact of Data Layout
Array-of-Structures (AoS) vs Structure-of-Arrays (SoA)

struct Coefficients
{
 float u, v, w;
 float x[8], y[8], z;
};

__global__ void kernel(Coefficients *data)
{
 int i = cg::this_grid.thread_rank();

 data[i].u = data[i].u + 10.f;
 data[i].y[0] = data[i].y[0] + 10.f;
}

0 80

AoS Memory Layout

u v w x0 … x7 y0 … y7 z

5656

Impact of Data Layout

• When loading coefficients u and y[0]:

• Successive threads in a warp read 4 bytes at 80-byte
stride.

Array-of-Structures (AoS) vs Structure-of-Arrays (SoA)

struct Coefficients
{
 float u, v, w;
 float x[8], y[8], z;
};

__global__ void kernel(Coefficients *data)
{
 int i = cg::this_grid.thread_rank();

 data[i].u = data[i].u + 10.f;
 data[i].y[0] = data[i].y[0] + 10.f;
}

…

0 80 160

u … y0 … z u … y0 … z u … y0 … z u … y0 … z

T0 T1 T2 T3

240

5757

Impact of Data Layout

• When loading coefficients u and y[0]:

• Successive threads in a warp read 4 bytes at 80-byte
stride.

• We are reading 7x more bytes than necessary!

• Remember data is read in sectors of 32 bytes.

• No potential reuse of the sectors loaded by the
previous access.

Array-of-Structures (AoS) vs Structure-of-Arrays (SoA)

struct Coefficients
{
 float u, v, w;
 float x[8], y[8], z;
};

__global__ void kernel(Coefficients *data)
{
 int i = cg::this_grid.thread_rank();

 data[i].u = data[i].u + 10.f;
 data[i].y[0] = data[i].y[0] + 10.f;
}

…

44 124 204

u … y0 … z u … y0 … z u … y0 … z u … y0 … z

T0 T1 T2 T3

284

5858

Impact of Data Layout

• Refactoring from AoS to SoA leads to coalesced
memory accesses for u and y[0].

Array-of-Structures vs Structure-of-Arrays

u u u u u u … y0 y0 y0 y0 y0 y0 y0 …

128 bytes

struct Coefficients
{
 float *u, *v, *w;
 float *x0, …, *x7, *y0, … *y7, *z;
};

__global__ void kernel(Coefficients data)
{
 int i = cg::this_grid.thread_rank();

 data.u[i] = data.u[i] + 10.f;
 data.y0[i] = data.y0[i] + 10.f;
}

SoA Memory Layout

T0 T1 T2 T3 T4 T5

…

5959

Impact of Data Layout

• Refactoring from AoS to SoA leads to coalesced
memory accesses for u and y[0].

Array-of-Structures vs Structure-of-Arrays

u u u u u u … y0 y0 y0 y0 y0 y0 … …

128 bytes

struct Coefficients
{
 float *u, *v, *w;
 float *x0, …, *x7, *y0, … *y7, *z;
};

__global__ void kernel(Coefficients data)
{
 int i = cg::this_grid.thread_rank();

 data.u[i] = data.u[i] + 10.f;
 data.y0[i] = data.y0[i] + 10.f;
}

SoA Memory Layout

T0 T1 T2 T3 T4 T5

60

Impact of Data Layout
Performance Analysis

• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^28

• Thread block size = 256

Implementation
Load Efficiency

(%)

Store Efficiency

(%)

Main Memory

Bandwidth

Utilization (%)

GPU Time (ms)

AoS 12.5 12.5 13.50 28.497

SoA 100 100 79.47 4.836

61

Unified L1 and Shared Memory

• Can be used as a typical hardware managed cache (L1) and/or a user-managed memory (Shared Memory)

• An application can configure its preferred split at runtime using cudaFuncSetAttribute() with the attribute
cudaFuncAttributePreferredSharedMemoryCarveout.

• Shared memory can be useful for:

• Storing frequently used data

• Improving global memory access patterns

• Data layout conversion

• Communication among threads of a thread block

62

Shared Memory

Capacity:

• Default 48 KiB per thread block, opt-in to get more using cudaFuncSetAttribute() with the attribute
cudaFuncAttributeMaxDynamicSharedMemorySize.

• Up to 227KiB per thread block on Hopper.

Organization:

• Divided into 32 banks, each 4-byte wide.

• Successive 4-byte words map to successive banks.

• Bank index calculation examples:

• (4-byte word index) % 32

• (1-byte word index / 4) % 32

Performance:

• Slower than registers, but much faster than global memory.

63

Logical View of Shared Memory Banks
4-byte data

64

Processing Data Types of Different Sizes

• 4-byte or smaller data types:

• Process addresses of all threads in a warp in a single phase

• 8-byte data types:

• Process addresses of all threads in a warp in 2 phases

• Each phase processes addresses of half of a warp

• 16-byte data types:

• Process addresses of all threads in a warp in 4 phases

• Each phase processes addresses of a quarter of a warp

65

Shared Memory Access Patterns
Bank conflicts

0 31

Threads

Shared Memory Banks

0 31

Threads

Shared Memory Banks

0 31

Threads

Shared Memory Banks

shmem[threadIdx.x] = data[tid] shmem[threadIdx.x * 2] = data[tid] data = shmem[0]

Coalesced access

(No bank conflicts)

Conflict access

(2-way bank conflicts)

Broadcast access

(No bank conflicts)

• Bank conflicts occur when threads in the same phase want to access the same bank.

4-byte data 4-byte data 4-byte data

66

Bank Conflicts
Example

• 32 x 32 array of floats in shared memory

• 4-byte data, 1 array element per bank

• Row-major layout

• 2D thread block

• Access pattern:

• idx := threadIdx.x*32 + threadIdx.y
• 32-way bank conflicts

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,31)

(1,31)

(2,31)

(3,31)

(31,31)(31,0) (31,1) (31,2) (31,3)

… …

…

Bank 0

Bank 1

Bank 2

Bank 3

Bank 31

All threads in a warp access the same bank!

Thread 0

Thread 1

Thread 2

Thread 3

Thread 31

…

67

Resolving Bank Conflicts
Padding

• 32 x 33 array of floats in shared memory

• 4-byte data, 1 array element per bank

• Row-major layout

• 2D thread block

• Access pattern:

• idx := threadIdx.x*33 + threadIdx.y
• No conflicts!

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,31) (0,32)

(1,31)

(2,31)

(3,31)

(31,31)(31,0) (31,1) (31,2) (31,3)

… …

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 31

Bank 0

Bank 1

Bank 2

Bank 3

Bank 31

…

Each thread in a warp accesses a distinct bank!

68

Resolving Bank Conflicts
Swizzling

• 32 x 32 array of floats in shared memory

• 4-byte data, 1 array element per bank

• Row-major layout

• 2D thread block

• Access pattern:

• idx = threadIdx.x*32 +
threadIdx.y ^ threadIdx.x

• No conflicts!

• No shared memory wasted!

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,31)

(1,31)

(2,31)

(3,31)

(31,31)(31,0) (31,1) (31,2) (31,3)

… …

…

Bank 0

Bank 1

Bank 2

Bank 3

Bank 31

Thread 0

Thread 1

Thread 2

Thread 3

Thread 31

…

Each thread in a warp accesses a distinct bank!

69

Vectorized Memory Accesses
Multi-word as well as multi-thread

int Threads 0-31

warp

Fills 1 cache line in a single fetch.

Memory

contiguous, aligned

memory access

cache line 0

70

Vectorized Memory Accesses
Multi-word as well as multi-thread

int2 Threads 0-15

warp

Fills 2 cache lines in a single fetch.

Memory

contiguous, aligned

memory access

cache line 0

Threads 16-31

cache line 1

71

Vectorized Memory Accesses
Multi-word as well as multi-thread

int4 Threads 0-7

warp

Fills 4 cache lines in a single fetch.

Memory

contiguous, aligned

memory access

cache line 0

Threads 8-15

cache line 1

Threads 16-23

cache line 2

Threads 24-31

cache line 3

7272

// Using vector data types
__global__
void copy(const float2 * __restrict__ in,
 float2 * __restrict__ out,
 int N)
{
 auto grid = cg::this_grid();
 int tid = grid.thread_rank();
 int stride = grid.size();

 for (int i = tid; i < N / 2; i += stride) {
 out[i] = in[i];
 // Same as:
 // out[i].x = in[i].x;
 // out[i].y = in[i].y;
 }
}

Vectorized Memory Accesses
Multi-thread, multi-word

• Vectorized global and shared memory accesses.

• Require aligned data.

• 64- or 128-bit width.

• Less executed instructions!

• More bytes in-flight!

• Approaches to enable vectorization:

1) By using vector data types, e.g., float2, float4.

2) Explicitly by casting to vector pointers.

1) Proper alignment required.

73

Vectorized Memory Accesses
Performance Analysis

• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^28

• Thread block size = 256

Implementation

Main Memory

Bandwidth Utilization

(%)

GPU Time (ms)

float 60.62 1.033

float2 84.34 0.737

float4 88.82 0.706

74

Maximizing Memory Throughput
General guidelines

Global memory

• Strive for aligned and coalesced accesses within a warp.

• Maximize bytes in-flight to saturate memory bandwidth.

• Process several elements per thread.

• Use vectorized loads/stores.

• Launch enough threads to maximize throughput.

L1 and L2 caches

• Cache blocking difficult, but not impossible.

• Rely on caches when you don’t have a choice.

Shared memory

• Use it to reduce global memory traffic.

• Strive to avoid bank conflicts.

• Use vectorized loads/stores.

75

Atomics

76

Serialized!
Least efficient access pattern.

Most efficient access pattern.

Using Atomics Efficiently
Access Patterns

Same address CoalescedScattered

7777

Using Atomics Efficiently
Example #1: find the maximum value of an array

• Problem description: given an input array, find the
maximum element in the array.

• Naïve implementation: every thread find its local
maximum and then atomically updates the global
maximum.

• N / elements_per_thread same-address global atomics.

__global__
void find_max(const int * __restrict__ in, int *max, int N)
{
 int grid_tid = cg::this_grid().thread_rank();
 int grid_stride = cg::this_grid().num_threads();

 // Find my local maximum
 int local_max = INT_MIN;
 for (int i = grid_tid; i < N; i += grid_stride) {
 if (in[i] > local_max)
 local_max = in[i];
 }

 // Atomically update the global max
 atomicMax(max, local_max);
}

7878

Using Atomics Efficiently
Example #1: find the maximum value of an array

• Optimization #1: maintain a block-level max in shared
memory.

• Reduces the number of same-address global atomics
by a factor equal to the thread block size.

__global__
void find_max(const int * __restrict__ in, int *max, int N)
{
 int grid_tid = cg::this_grid().thread_rank();
 int grid_stride = cg::this_grid().num_threads();
 auto block = cg::this_thread_block();
 int block_tid = block.thread_rank();

 __shared__ int block_max;

 // Find my local maximum
 int local_max = INT_MIN;
 for (int i = grid_tid; i < N; i += grid_stride) {
 if (in[i] > local_max)
 local_max = in[i];
 }

 // Atomically update the block-level max
 atomicMax(&block_max, local_max);
 block.sync();

 // Atomically update the global max
 if (block_tid == 0)
 atomicMax(max, block_max);
}

7979

Using Atomics Efficiently
Example #1: find the maximum value of an array

• Optimization #2: use a parallel reduction to calculate
the block-level max in shared memory.

//Assumes a block dimension of 256
__global__
void find_max(const int * __restrict__ in, int *max, int N) {
 …
 auto tile = cg::tiled_partition<32>(block);
 extern __shared__ int sdata[];

 // Find my local maximum as before
 // Each thread puts its local max into shared memory
 sdata[block_tid] = thread_max;

 // Block-level reduction
 if (block_tid < 128) {
 if (sdata[block_tid + 128] > thread_max)
 thread_max = sdata[block_tid + 128];
 sdata[block_tid] = thread_max;
 }
 block.sync();
 if (block_tid < 64) {
 if (sdata[block_tid + 64] > thread_max)
 thread_max = sdata[block_tid + 64];
 sdata[block_tid] = thread_max;
 }
 block.sync();

 // Warp-level reduction
 if (tile.meta_group_rank() == 0) {
 thread_max = cg::reduce(tile, thread_max,
 cg::greater<int>());
 }

 if (block_tid == 0)
 atomicMax(max, thread_max);
}

80

Performance Analysis

• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^28

• Uniform distribution (-50, 50).

Implementation Thread Block Size GPU Time (ms)

global atomics 256 6.839

shared memory atomics 256 1.334

shared memory reduction 256 1.066

8181

Using Atomics Efficiently
Example #2: vector update

• Problem description: a = a + b * c

__global__
void vector(const float * __restrict__ b,
 const float * __restrict__ c,
 float * __restrict__ a,
 int N) {
 int grid_tid = cg::this_grid().thread_rank();
 int grid_stride = cg::this_grid().num_threads();

 for (int i = grid_tid; i < N; i += grid_stride) {
 a[i] += b[i] * c[i];
 }
}

Memory operations = 3 reads + 1 write

8282

Using Atomics Efficiently
Example #2: vector update

• Optimization: use atomics to update each vector
element even though atomicity is not required.

• Offload some of the computation to the L2 cache.

• Saves reading the value of a[i] in registers.

• This reduces the latency to compute each element of
the vector.

• Can result in more bytes in-flight!

__global__
void vector(const float * __restrict__ b,
 const float * __restrict__ c,
 float * __restrict__ a,
 int N) {
 int grid_tid = cg::this_grid().thread_rank();
 int grid_stride = cg::this_grid().num_threads();

 for (int i = grid_tid; i < N; i += grid_stride) {
 atomicAdd(&a[i], b[i] * c[i]);
 }
}

Memory operations = 2 reads + 1 write

83

Performance Analysis
NVIDIA H100 SXM

NCU Memory Chart (Transfer Size)
• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^27

84

Performance Analysis
NVIDIA H100 SXM

• Experimental setup:

• NVIDIA H100 SXM, 1980 MHz

• Problem size = 2^27

NCU Memory Chart (Throughput)

85

Performance Analysis
NVIDIA H100 SXM

• ~5% increase in memory throughput translates into a corresponding reduction in execution time. Why?

• This kernel is DRAM bandwidth bound.

86

Summary

87

Which optimizations to focus on?
Solving the bottlenecks

• Compute bound

• Reduce instruction count.

• E.g., use vector loads/stores.

• Use tensor cores.

• Use lower precision arithmetic, fast math intrinsics.

• Bandwidth bound

• Reduce the amount of data transferred.

• Optimize memory access patterns.

• Lower precision datatypes.

• Kernel fusion.

• Latency bound

• Increase number of instructions and memory accesses in-flight.

• Increase parallelism, occupancy.

88

Additional Resources

• CUDA best practices guide: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

• CUDA samples: https://github.com/NVIDIA/cuda-samples

• GTC’24 sessions: https://www.nvidia.com/gtc/sessions/performance-optimization/

• Advanced Performance Optimization in CUDA [S62192]

• Performance Optimization for Grace CPU Superchip [S62275]

• Grace Hopper Superchip Architecture and Performance Optimizations for Deep Learning Applications [S61159]

• Multi GPU Programming Models for HPC and AI [S61339]

• More Data, Faster: GPU Memory Management Best Practices in Python and C++ [S62550]

• Harnessing Grace Hopper's Capabilities to Accelerate Vector Database Search [S62339]

• From Scratch to Extreme: Boosting Service Throughput by Dozens of Times with Step-by-Step Optimization [S62410]

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://github.com/NVIDIA/cuda-samples
https://www.nvidia.com/gtc/sessions/performance-optimization/

89

	Slide 1: Introduction to CUDA Performance Optimization
	Slide 2
	Slide 3
	Slide 4: GPU Overview
	Slide 5: Streaming Multiprocessor (SM)
	Slide 6: SIMT Architecture
	Slide 7: SIMT Architecture
	Slide 8: SIMT Architecture
	Slide 9: CUDA Programming Model
	Slide 10: Thread Hierarchy
	Slide 11: Thread Block Clusters
	Slide 12: Thread Hierarchy
	Slide 13: Thread Hierarchy
	Slide 14: Thread Hierarchy
	Slide 15: Memory Hierarchy
	Slide 16: Synchronization
	Slide 17: Atomics
	Slide 18: Thread Scopes
	Slide 19
	Slide 20: Little’s Law
	Slide 21: Little’s Law
	Slide 22: Little’s Law
	Slide 23: Hiding Latencies
	Slide 24: Instruction Issue
	Slide 25: Increasing ILP
	Slide 26: Increasing ILP
	Slide 27: Warp Scheduling
	Slide 28: Warp Scheduling
	Slide 29: Warp Scheduling
	Slide 30: Warp Scheduling
	Slide 31: Warp Scheduling
	Slide 32: Warp Scheduling
	Slide 33: Warp Scheduling
	Slide 34: Warp Scheduling
	Slide 35: Warp Scheduling
	Slide 36: Warp Scheduling
	Slide 37: How to Increase Active Warps?
	Slide 38: Occupancy Limiters
	Slide 39: Occupancy Limiters
	Slide 40: Occupancy Limiters
	Slide 41: ILP vs TLP for Hiding Latencies
	Slide 42: What Occupancy Do I Need?
	Slide 43
	Slide 44: Memory Hierarchy
	Slide 45: Why Do GPUs Have Caches?
	Slide 46: Memory Transactions
	Slide 47: Memory Reads & Writes
	Slide 48: Global Memory Access Patterns
	Slide 49: Global Memory Access Patterns
	Slide 50: Global Memory Access Patterns
	Slide 51: Global Memory Access Patterns
	Slide 52: Global Memory Access Patterns
	Slide 53: Global Memory Access Patterns
	Slide 54: Global Memory Access Patterns
	Slide 55: Impact of Data Layout
	Slide 56: Impact of Data Layout
	Slide 57: Impact of Data Layout
	Slide 58: Impact of Data Layout
	Slide 59: Impact of Data Layout
	Slide 60: Impact of Data Layout
	Slide 61: Unified L1 and Shared Memory
	Slide 62: Shared Memory
	Slide 63: Logical View of Shared Memory Banks
	Slide 64: Processing Data Types of Different Sizes
	Slide 65: Shared Memory Access Patterns
	Slide 66: Bank Conflicts
	Slide 67: Resolving Bank Conflicts
	Slide 68: Resolving Bank Conflicts
	Slide 69: Vectorized Memory Accesses
	Slide 70: Vectorized Memory Accesses
	Slide 71: Vectorized Memory Accesses
	Slide 72: Vectorized Memory Accesses
	Slide 73: Vectorized Memory Accesses
	Slide 74: Maximizing Memory Throughput
	Slide 75
	Slide 76: Using Atomics Efficiently
	Slide 77: Using Atomics Efficiently
	Slide 78: Using Atomics Efficiently
	Slide 79: Using Atomics Efficiently
	Slide 80: Performance Analysis
	Slide 81: Using Atomics Efficiently
	Slide 82: Using Atomics Efficiently
	Slide 83: Performance Analysis
	Slide 84: Performance Analysis
	Slide 85: Performance Analysis
	Slide 86
	Slide 87: Which optimizations to focus on?
	Slide 88: Additional Resources
	Slide 89

