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Image quality measures are becoming increasingly important in the field of computer graphics. For example,
there is currently a major focus on generating photorealistic images in real time by combining path tracing
with denoising, for which such quality assessment is integral. We present FLIP, which is a difference evaluator
with a particular focus on the differences between rendered images and corresponding ground truths. Our
algorithm produces a map that approximates the difference perceived by humans when alternating between
two images. FLIP is a combination of modified existing building blocks, and the net result is surprisingly
powerful. We have compared our work against a wide range of existing image difference algorithms and
we have visually inspected over a thousand image pairs that were either retrieved from image databases
or generated in-house. We also present results of a user study which indicate that our method performs
substantially better, on average, than the other algorithms. To facilitate the use of FLIP, we provide source
code in C++, MATLAB, NumPy/SciPy, and PyTorch.
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1 INTRODUCTION
In computer graphics, image quality metrics have been used to guide algorithmic development, to
compare the performance of rendering techniques, and to improve on loss functions for the ever
growing adoption of deep learning approaches to post-processing [Bako et al. 2017; Vogels et al.
2018; Zwicker et al. 2015]. The foremost use of these metrics have been to compare an approximate
rendered image to a ground truth version of the same image. Image metrics are key for evaluating
image quality and are hence important tools in our field.
Flipping, or alternating, between two seemingly similar images reveals their differences to an

observer much more distinctly than showing the images side by side. Yet, algorithms that measure
the differences between two images are often developed under the assumption that the images are
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shown next to each other or alternated between with an empty, e.g., a black, image displayed for a
short period before the next image is shown. Both of these options rely on humanmemory and make
differences harder for an observer to evaluate. While this might be desired in certain applications,
rendering researchers usually prefer to compare results by alternating between two images to
identify all differences. FLIP aims at filling this gap in image difference methods. Furthermore, both
the development and evaluation of FLIP was centered around detailed examination of error maps.
This is contrary to much of the previous work, where metrics were evaluated by their ability to
explain users’ response to stimuli and the error maps themselves were seldom considered.

As an image comparison algorithm, FLIP carefully evaluates differences in color and edges based
on, or inspired by, models of the human visual system. Developed mainly for rendering, it also pays
attention to differences in point-like structures, such as fireflies, i.e., isolated pixels with colors
that differ greatly from the color of their surroundings. In addition, FLIP is designed to neglect
differences in details that the observer cannot perceive under given viewing conditions.

FLIP is a full-reference image difference algorithm, whose output is a new image indicating
the magnitude of the perceived difference between two images at each pixel. Alternatively, for a
more compact representation of the differences, the user can request FLIP to pool the per-pixel
differences down to a weighted histogram, or all the way down to a single value. Inspired by the
iCAM framework [Fairchild and Johnson 2004], the model includes contrast sensitivity functions,
feature detection models, and a perceptually uniform color space. We provide improvements to
each of these building blocks to obtain an algorithm that, ultimately, presents differences that agree
well with how human observers perceive them. We show that this is indeed the case via a user
study, where alternating images, together with difference maps from multiple algorithms, were
shown to subjects who were asked to rank the difference maps based on how well the maps agreed
with what the subjects observed when looking at the alternating images. Our user study shows
that FLIP performs well for several image types in addition to rendered ones, including natural
images and images generated by artificial neural networks.
Our main contribution lies in a simple-to-use algorithm for capturing and visualizing the dif-

ference observed when flipping between two images. The algorithm has been battle-tested using
a large set of image pairs against a substantial set of existing methods. Additionally, we provide
source code for FLIP in C++, MATLAB, NumPy/SciPy, and PyTorch.
This paper is structured as follows. In Section 2, we outline the design goals and limitations

of FLIP. Then, in Section 3, we discuss previous work in the field of image comparisons and, in
Section 4, we introduce our algorithm. Our proposed way of pooling the per-pixel differences is
described in Section 5. In Section 6, we analyze the difference maps generated by FLIP, outline our
user study, and present the results, before we conclude the paper in Section 7.

2 GOALS AND LIMITATIONS
In this section, we aim to frame FLIP by noting the design goals of the algorithm and its limitations.
This section should make it clear what FLIP strives to accomplish and what it does not.

The core goal of FLIP is to present a per-pixel difference map between two images, where the
differences are approximately proportional to those seen by a human observer when flipping back
and forth between the images, located in the same position and without blanking in between. This
implies that the differences should depend on the observer’s distance to the display as well as
the display’s pixel size. Furthermore, it requires the color distances to be computed in a space
where they are proportional to the distances perceived by the observer, i.e., in a perceptually
uniform color space. In addition, there is a need for certain attention to differences in edge content,
where even small differences in color can lead to large perceived differences due to the presence
of edges. Consideration should also be taken to differences in point content as these often occur
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in a rendering context due to, e.g., fireflies. Finally, for rendered images, the emphasis on flipping
is truly important, since this is the way rendering researchers often evaluate image quality of an
algorithm, i.e., by flipping back and forth and spotting all differences.

FLIP is designed to compute differences based on the criteria above while maintaining ease-of-use
by keeping the complexity low and the need for user-specific parameter options minimized. In this
case, the cost of simplicity is the situational need for less complex models, which are potentially less
accurate than their more complex counterparts. For example, FLIP does not use the most accurate
color metric as it would require the user to input viewing conditions that are non-trivial to measure.
Additionally, the algorithm is not designed to handle high-dynamic range input.

Our model’s main limitation is its inability to detect masking [Chandler 2013], which can lead to
overestimation of differences when they are not perceived due to other image content masking
them out. This is a difficult problem to solve, however, as there are multiple components and effects
to consider, and doing so would require a masking function that depends on the viewing conditions.
To our knowledge, such a masking detection function does not exist.

We recommend to use FLIP for evaluating full, per-pixel difference maps, as such maps comprise
complete information about the differences’ location and magnitude. We do, however, appreciate
the need for pooled difference values during, e.g., larger scale comparisons, training of artificial
neural networks, or automated testing of algorithms. Therefore, we suggest different levels of
pooling, either down to a weighted histogram or all the way down to a single value.

3 PREVIOUS WORK
Assessment of a distorted image’s quality can be done in multiple ways. On a high level, the
methods of assessment can be divided into full-reference, reduced-reference, and no-reference
algorithms. The difference between the three paradigms is the extent to which a non-distorted
version of the image, i.e., a reference, is used. Full-reference methods use the entire reference image,
while reduced-reference use parts of it, and no-reference algorithms operate without any reference.
FLIP is a full-reference algorithm and this section will focus on those. For a survey, including
reduced-reference and no-reference methods, we refer to the work by Chandler [2013].

The result of an image quality assessment can contain much or little spatial information. Some
algorithms generate a single, overall quality value for the image. This value often corresponds
to the overall degree of distortion [Alakuijala et al. 2017; Prashnani et al. 2018; Wang et al. 2003].
At the other end of the spatial information spectrum is the option of presenting one value per
pixel, which opens up the possibility to analyze where the distortions are visible [Mantiuk et al.
2011; Wolski et al. 2018], and what their magnitudes are in each pixel [Fairchild and Johnson 2004;
Johnson and Fairchild 2003; Wang et al. 2004; Zhang et al. 2018; Zhang and Wandell 1997]. In
our comparisons, we will only include algorithms that originally yield per-pixel values or can be
naturally modified to do so. There has been a vast amount of research conducted in the field of
image quality assessment and we cannot cover it all in this paper. Therefore, we have selected a
subset of the available methods, including several classic ones as well as the ones that are state of
the art, to briefly review here and to be subject to comparison with FLIP. We note that neither of
these were developed under the viewing protocol that FLIP targets, i.e., alternating images with no
blank image shown between the flips.

Symmetric mean absolute percentage error (SMAPE), described in the paper by Vogels et al. [2018],
is a simple statistical method that computes the difference between the reference and distorted
image and divides by the sum of absolute values. It has seen use in, e.g., the training of neural
networks used for denoising. SSIM [Wang et al. 2004] is an index based on local image statistics. It
produces a per-pixel similarity value related to the local difference in the average value, the variance,
and the correlation of luminances. S-CIELAB [Johnson and Fairchild 2003; Zhang andWandell 1997]

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 15. Publication date: August 2020.



15:4 Andersson et al.

takes parts of the human visual system (HVS) into account in its quality assessment by filtering the
images using contrast sensitivity functions and calculating the difference between the distorted
and the reference image in a perceptually uniform color space. FLIP adopts and improves on these
building blocks. Another method based around properties of the HVS is HDR-VDP-2 [Mantiuk
et al. 2011]. Unlike the mentioned algorithms, HDR-VDP-2 attempts to predict the visibility of
distortions, i.e., the probability that a distortion is detectable in a pixel, rather than the magnitude
of the distortion. It does this by modeling several, complex parts of the HVS. While developed for
high-dynamic range images, the algorithm can also handle low-dynamic range input.
In recent years, researchers have begun using artificial neural networks and deep learning

(DL) to aid in the assessment of image quality. Zhang et al. [2018] discovered that, during image
classification and other related image processing, the intermediate image representation produced
by the network could, advantageously, be used for comparison with other images. Shortly thereafter,
Prashnani et al. [2018] presented PieAPP, which is a DL framework where the network is tasked
with mimicking human preference in regards to which of two distorted images is more similar to a
reference. This is done by having the network compute a score for each of the distorted images and
then compare the two scores. Once trained, the second distorted image can be neglected and the
score for the first image can be used as a measure of its quality. PieAPP was not originally targeted
toward computing a value per pixel, but we have adapted it so that it can (Section 6). Wolski et
al. [2018] exploit user markings on distorted images (when compared to reference images), where
the users indicate the locations in the images where they observe distortions. In that study, the
users performed the marking when shown the distorted and the reference images next to each
other, rather than during flipping. The target of the work, similar to that of HDR-VDP-2, was to
produce a visibility map, i.e., a per-pixel map indicating where distortions are likely to be observed.
This was done by training a new metric based on a custom convolutional neural network.

As part of the Guetzli system to optimize JPEG compression [Alakuijala et al. 2017], the aim of
the Butteraugli metric is to detect if an image includes noticeable compression artifacts. This is
done by examining the largest value in the generated difference map. However, considering the
map in its entirety could still be beneficial, as it provides indications of where distortions are visible
and how severe they are. There is no published description of the Butteraugli method, except for
what the source code suggests.

4 ALGORITHM
The goal of FLIP is to compute an image that is proportional to the difference perceived by a human
when alternating between two images on top of each other (see Section 2). This viewing protocol
was adopted throughout the development of FLIP and, as such, it permeates the entire algorithm.
For an evaluator of image differences under a different viewing protocol, other design choices
would likely, but not necessarily, be made.

Henceforth, we will focus on differences between a reference and a test image, where the latter
usually is an approximation of the former, generated, e.g., by a less complex algorithm or subject to
some form of distortion. Thus, the image computed by FLIP can be interpreted as an error map,
where pixel values are approximately proportional to the perceived error in the test image.

FLIP is inspired by the iCAM framework [Fairchild and Johnson 2004] and is outlined in Figure 1.
As can be seen in the figure, there are two parallel pipelines: a color pipeline and a feature pipeline,
whose purposes are to compute a color difference and a feature difference, respectively. These are
combined in a final step at the end of the pipeline. In Appendix A, we present pseudocode for FLIP.
In the color pipeline, we first apply spatial filters to each image. These filters are based on the

human visual system’s contrast sensitivity functions (CSFs) and they are applied to remove high-
frequency details that we cannot perceive at a given distance from a given display. After that, we
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Fig. 1. The FLIP pipeline.

transform the images’ pixel values into the perceptually uniform color space (PUCS) L∗a∗b∗ [CIE
1978], where we have one achromatic and two chromatic components. The L∗a∗b∗ space was one of
the first proposed PUCS and, while it is simple and easy to use, it is not without flaws [Fairchild 2013].
In particular, it does not handle the Hunt effect, i.e., the fact that color differences appear larger at
higher luminance than lower [Hunt 1952]. We address this by performing a slight adjustment of
the colors in the filtered images. Once filtered and adjusted, we compare the images’ colors on a
per-pixel basis. The color difference between two pixels is computed in the adjusted L∗a∗b∗ space
with a metric that yields differences that agree better with our perception than, e.g., standard
Euclidean distance in the RGB space. Once computed, the differences are mapped to the target
[0, 1] range. We also perform feature detection, where we localize edges and points in both images.
The per-pixel difference in feature content is then used to enhance the color differences, yielding
the final FLIP error map. In the following, we describe the pipeline’s building blocks in more detail.

4.1 Color Pipeline
During the preprocessing step (see Figure 1), both the reference and the test images are filtered
such that details that cannot be perceived under the given viewing conditions are removed and,
thus, do not affect the final error map. Both images are also adjusted to accommodate for the Hunt
effect so that chromatic errors become smaller with lower luminance.
We assume that the input images are stored in sRGB space, where a pixel’s color is denoted

{𝑅𝑠 ,𝐺𝑠 , 𝐵𝑠 }, with 𝑅𝑠 , 𝐺𝑠 , and 𝐵𝑠 representing the red, green, and blue color channels, respectively.

4.1.1 Spatial Filtering. As filtering must be done in a linear space, we first linearize the sRGB colors
using standard linearization formulae [Poynton 2003], resulting in linear RGB colors, {𝑅′,𝐺 ′, 𝐵′}.
FLIP’s spatial filtering is carried out in opponent color space, where the CSFs are defined and where
there is one achromatic channel, one red-green channel, and one blue-yellow channel. Several
such opponent spaces have been proposed. The one used in the S-CIELAB research [Johnson
and Fairchild 2003; Zhang and Wandell 1997] leads to undesirable color shifts during filtering,
where achromatic images may become chromatic. To avoid this, we choose to instead use the
Yycxcz space [Flohr et al. 1993], a linearized version of L∗a∗b∗ , which has been shown to perform
well as an opponent space [Monga et al. 2003]. Here, Yy contains the achromatic information,
cx the red-green information, and cz the blue-yellow information. From linear RGB space, the
transformation to Yycxcz is done via the XYZ tristimulus values [Flohr et al. 1993] and with the
D65 standard illuminant with luminance normalized to 1.0 [Poynton 2003].

There is one CSF per opponent channel, denoted 𝑆Yy , 𝑆cx , and 𝑆cz , for the achromatic and the two
chromatic channels, respectively. Each CSF serves to tell how sensitive we are to spatial changes
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Table 1. Table of CSF constants used by Johnson and Fairchild [2003]. In their publication, the 𝑏21 value is
erroneously rounded to 0. The actual value, as confirmed by the authors, was 0.00001.

Parameters Values
𝑎01, 𝑏01, 𝑐01 75.0000, 0.20000, 0.8000
𝑎11, 𝑏11, 𝑐11 109.1413, 0.00040, 3.4244
𝑎12, 𝑏12, 𝑐12 93.5971, 0.00370, 2.1677
𝑎21, 𝑏21, 𝑐21 7.0328, 0.00001, 4.2582
𝑎22, 𝑏22, 𝑐22 40.6910, 0.10390, 1.6487

in the corresponding channel [DeValois and DeValois 1990]. The CSFs measure sensitivity as a
function of cycles per degree of visual angle. For a pixel-based display setting, we relate cycles to
pixels by assuming that one cycle corresponds to two pixels. We compute the number of pixels per
degree (PPD), 𝑝 , of a given monitor of size𝑊m × 𝐻m square meters and resolution𝑊p × 𝐻p pixels,
for an observer at distance 𝑑 meters from the monitor, as

𝑝 = 𝑑
𝑊p

𝑊m

𝜋

180
, (1)

where we have assumed that the aspect ratio of a pixel is 1:1, so the number of PPD in the 𝑥 and 𝑦
directions is the same. Assuming a monitor of size𝑊m ×𝐻m = 0.69 × 0.39 m2 and (4k) resolution
𝑊p × 𝐻p = 3840 × 2160 pixels, with an observer at 𝑑 = 0.70 meters from the monitor, Equation 1
yields 𝑝 = 67 PPD. This is the default setup used in our experiments. At a larger number of PPD,
we are less sensitive to high frequencies. For example, a black/white checkerboard will look gray at
a large distance from the monitor or when shown with very small pixels.

We base the CSFs on the work of Movshon and Kirpes [1988] and Johnson and Fairchild [2003].
Note that these CSFs were not measured for the Yycxcz opponent space and are thus not completely
valid within it. However, the inaccuracy caused by this is negligible in the larger context of the
difference evaluator [Johnson and Fairchild 2003]. The achromatic CSF is a band-pass filter, while
the chromatic ones are low-pass. Despite its band-pass nature, we choose to change the achromatic
CSF into a low-pass filter so that it retains the DC component, as described by Johnson and
Fairchild [2001], and does not modulate lower frequencies. That is, we set the achromatic CSF,
𝑆Yy , to 1 for each frequency lower than the frequency corresponding to the peak of the original
band-pass filter. Furthermore, each CSF is normalized so that its largest value is 1. With these
changes, the three CSFs, 𝑆Yy , 𝑆cx , and 𝑆cz , are given by

𝑆Yy (𝑓 ) =
{
𝑆Yy (𝑓 )/𝑆Yy

(
𝑐01
𝑏01

)
, if 𝑓 ≥ 𝑐01

𝑏01
,

1, otherwise,
𝑆cx (𝑓 ) =

(
𝑎11𝑒

−𝑏11 𝑓 𝑐11 + 𝑎12𝑒
−𝑏12 𝑓 𝑐12 ) /(𝑎11 + 𝑎12),

𝑆cz (𝑓 ) =
(
𝑎21𝑒

−𝑏21 𝑓 𝑐21 + 𝑎22𝑒
−𝑏22 𝑓 𝑐22 ) /(𝑎21 + 𝑎22) ,

(2)

where 𝑆Yy (𝑓 ) = 𝑎01 𝑓
𝑐01𝑒−𝑏01 𝑓 and where the maximum points were found with differentiation of

the unnormalized functions. The constants are shown in Table 1.
For faster filtering, especially on GPUs, we transform the CSFs from the frequency domain to the

spatial domain. One way of accomplishing this is by approximating the CSFs in Equation 2 with a
sum of Gaussians. To avoid ringing artifacts in our images, which may result from directly using
the CSFs in Equation 2, we instead approximate the CSFs by one or two zero-centered Gaussians
for each channel.
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In the continuous frequency domain (𝑓 ), a Gaussian can be described by

𝐺 (𝑓 ) = 𝑎𝑒−𝑏𝑓
2
, (3)

which can be inverse Fourier transformed to the spatial domain (𝑥), resulting in

𝑔(𝑥) = 𝑎

√
𝜋

𝑏
𝑒−

𝜋2
𝑏
𝑥2
. (4)

We approximate the CSFs in Equation 2 with Gaussians (Equation 3), found with optimization
functions in MATLAB. To approximate the luminance and red-green CSFs, 𝑆Yy and 𝑆cx , respectively,
one Gaussian suffices and we found 𝑏Yy = 0.0047 and 𝑏cx = 0.0053. Since the filters are later
normalized in the spatial domain, the amplitudes for these can be neglected. For the blue-yellow
CSF, 𝑆cz , a satisfactory fit requires the sum of two Gaussians. We found 𝑎cz,1 = 34.1 and 𝑏cz,1 = 0.04
for the first Gaussian and 𝑎cz,2 = 13.5 and 𝑏cz,2 = 0.025 for the second.

Following the work by Johnson and Fairchild [2003], the frequency domain CSFs should be eval-
uated for frequencies in the range

[
−𝑝

2 , +
𝑝

2
]
, where 𝑝

2 corresponds to half the sampling frequency,
𝐹𝑠 . The spacing, Δ, between two samples in the spatial domain is then given by

Δ =
1
𝐹𝑠

=
1
𝑝
. (5)

Next, we determine the radius, 𝑟 , of our spatial filter. To simplify implementations, we choose to use
the same radius for each of the three CSF filters. For a single Gaussian with standard deviation 𝜎 , a
filter with radius 3𝜎 is known to retain 99.7% of the function’s energy, which we deem sufficient
for our spatial filter kernels. For the blue-yellow CSF, where we sum two Gaussians with different
amplitudes, this result does not hold. However, by using the radius corresponding to the Gaussian
with largest standard deviation, 99.7% (or more) of the energy is still preserved. On the form where
it includes the standard deviation, 𝜎 , a Gaussian is proportional to 𝑒−𝑥

2/(2𝜎2) and, comparing to
Equation 4, we get 𝜎 =

√
𝑏
2𝜋2 . The radius (in pixels), 𝑟 , of the spatial filter becomes

𝑟 =

⌈
3𝜎
Δ

⌉
= ⌈3𝜎max𝑝⌉ , (6)

where 𝜎max =

√
𝑏max
2𝜋2 and 𝑏max = max{𝑏Yy , 𝑏cx , 𝑏cz,1, 𝑏cz,2} = 0.04. We evaluate Equation 4 at

{0,±Δ,±2Δ, . . . ,±𝑟Δ} in order to generate the spatial filter kernel. The approximated CSFs are
shown in Figure 2. To go from one-dimensional to two-dimensional filters, we assume rotational
symmetry and, for each location, (𝑥,𝑦), 𝑥,𝑦 ∈ {0,±1,±2, . . . ,±𝑟 }, in the filters, we evaluate Equa-
tion 4 at 𝑑 (𝑥,𝑦) =

√
(𝑥Δ)2 + (𝑦Δ)2 = Δ

√
𝑥2 + 𝑦2. Finally, we normalize the filters such that each

filter’s weights sum to one. With the CSFs described, we can now perform the filtering of our
images by convolving each channel with the respective two-dimensional spatial CSF filter. Since
we use different Gaussians for the different channels and the RGB cube is not axis-aligned in Yycxcz
space, this operation could result in colors outside the RGB cube. To retrieve filtered colors within
a known range, which is essential for our color metric (see Section 4.1.3), we transform the filtered
colors, {Ỹy, c̃x, c̃z}, to linear RGB and clamp them to the [0, 1]3 cube before proceeding.

4.1.2 Perceptually Uniform Color Space. The idea behind a perceptually uniform color space is that
the numeric distances between colors in such a space agree with the perceived distance between
them [Wyszecki and Stiles 1982]. Next, we therefore transform the clamped, filtered linear RGB
colors, found in Section 4.1.1, to L∗a∗b∗ values,

{
𝐿∗, 𝑎∗, 𝑏∗

}
, again via the XYZ tristimulus values

and with the D65 standard illuminant with luminance normalized to 1.0 [Poynton 2003].
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Fig. 2. Top: the original CSFs (Equation 2) are shown in red and our approximation, using a single Gaussian,
or two in the case of the blue-yellow channel, in black. Bottom: the red curves are inverse discrete Fourier
transformed versions of the CSFs in Equation 2, but they have negative lobes, which we wish to avoid. The
black curves are the Gaussians from the top row, analytically inverse Fourier-transformed to the spatial
domain. These do not include any negative lobes and are the ones used by FLIP.

Fig. 3. Left: two colors with the same, high luminance, where the second color was generated using a rotation
of the chrominance of the first. Right: two colors with the same, low luminance, with the same chrominance
components as the colors in the first color pair. The difference between the colors is perceived as larger in the
left pair due to the Hunt effect.

With higher luminance, chromatic differences appear larger. This is related to the Hunt ef-
fect [Hunt 1952], which is an important effect to consider in color distance computations. Figure 3
illustrates this. The chrominance components of both color pairs in the figure are the same, but in
the first pair, the luminance level is higher than in the latter. We see how the intra-pair difference
appears larger in the first pair, even though the Euclidean distance, which is the standard metric in
the L∗a∗b∗ space, between both pairs is the same. This is because the Hunt effect is not accounted
for in the original L∗a∗b∗ space [Fairchild 1996]. To account for this, without adopting a more
complex color space and metric, we lower the distance between the chrominance components at
lower luminance levels by pushing them toward the luminance axis, i.e.,{

𝐿∗h, 𝑎
∗
h, 𝑏

∗
h
}
= {𝐿∗, 𝑓 (𝐿∗, 𝑎∗), 𝑓 (𝐿∗, 𝑏∗)} , (7)

where we use the h subscript to denote Hunt-adjusted colors and 𝑓 (𝐿∗, 𝑐) = 𝐿∗

100𝑐 , with 𝑐 ∈ {𝑎∗, 𝑏∗}.
In the L∗a∗b∗ space, the luminance, 𝐿∗, is in the [0, 100] range, implying that 𝑓 (𝐿∗, 𝑐) ∈ [0, 𝑐].
Furthermore, we note that the luminance component is unaffected by theHunt adjustment. Applying
the Hunt-adjustment to our filtered colors,

{
𝐿∗, 𝑎∗, 𝑏∗

}
, transforms them to

{
𝐿∗h, 𝑎

∗
h, 𝑏

∗
h

}
.
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Fig. 4. Illustration of our error redistribution, compressing large color distances into a smaller range.

4.1.3 Color Metric. Most metrics in perceptually uniform color spaces, including the Euclidean
distance, originally suggested for the L∗a∗b∗ space [CIE 1978], are only valid if the distance between
the colors is small. However, in rendering applications, we often have large differences due to,
e.g., fireflies or differences in the antialiasing techniques used. Hence, we have selected HyAB—a
metric designed to handle larger color distances—as our core color metric [Abasi et al. 2020]. In the
L∗a∗b∗ space, the HyAB distance, ΔEHyAB, between two colors, R = {𝐿∗R, 𝑎∗R, 𝑏∗R} and T = {𝐿∗T, 𝑎∗T, 𝑏∗T},
is given by

ΔEHyAB (R,T) = |𝐿∗R − 𝐿∗T | +
√(

𝑎∗R − 𝑎∗T
)2 + (

𝑏∗R − 𝑏∗T
)2
. (8)

Translating the [0, 1]3 RGB cube, which contains all the colors possible in our input images, to the
L∗a∗b∗ space, the largest HyAB distance occurs between blue ({0, 0, 1} in RGB) and green ({0, 1, 0}
in RGB) and is 𝑐max = 308. For comparison, the distance between black and white is 100. If the
intra-pair differences in two color pairs are perceived as very large, it is difficult to determine which
colors are further apart (is blue and green three times further apart than black and white, as the
HyAB distance implies?). To reduce the gap between large differences in luminance versus large
differences in chrominance, we propose to not simply divide our computed HyAB distances by 𝑐max
to map them into the [0, 1] range, but instead compress large distances into the top of the [0, 1]
range and map smaller distances to the remaining part of it.
Inspired by the work of Huang et al. [2015], we raise our computed distances to the power of

𝑞c = 0.7, implying that the distance between two Hunt-adjusted, filtered colors (Section 4.1.2), R̃h

and T̃h is
(
ΔEHyAB

(
R̃h, T̃h

))𝑞c
. Before performing the [0, 1] mapping of the HyAB distance, we

note that, due to the Hunt adjustment, our blue and green colors are modified (but are still the two
colors yielding the maximum distance) and the distance between them was found to be 𝑐h,max = 203.
The maximum distance, or error, between two colors in our images is then, after application of the
power function, 𝑐max =

(
𝑐h,max

)𝑞c = 41.
Finally, we map the distance to the [0, 1] range. As mentioned above, larger errors will be

compressed into the top of the range, while smaller errors will occupy a larger part of it. We set two
parameters, 𝑝c, 𝑝t ∈ [0, 1], to determine the mapping, which is illustrated in Figure 4. Errors in the
range [0, 𝑝c𝑐max) are mapped linearly to the range [0, 𝑝t), while errors in the range [𝑝c𝑐max, 𝑐max]
are mapped linearly to the range [𝑝t, 1], where compression of the large error range is achieved
when 𝑝c < 𝑝t. For FLIP, we use 𝑝c = 0.4 and 𝑝t = 0.95. The result of this mapping, i.e., the final
color difference after spatial filtering, Hunt-adjustment, and re-mapping, is denoted ΔEc.

4.2 Feature Pipeline
Edges are particularly well detected by the human visual system [McIlhagga 2018] and, as a
consequence, edge comparisons are often part of image difference calculations [Fairchild and
Johnson 2004]. In addition, differences in points are of importance in the evaluation of rendering
algorithms. Because of this, we developed a feature detection mechanism that captures the presence
of edges and points in images. We run the detector on both the reference and the test image,
compare the outputs, and use the results to amplify the color differences computed in Section 4.1.
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Fig. 5. From left to right: 1) the reference image, 2) the test image, including a small edge generated by a short
ramp on either side and some salt and pepper noise, 3) the edge difference (first argument in Equation 9), 4)
the point difference (second argument in Equation 9), and 5) the maximum of the edge and point difference
in each pixel. Note that all differences are scaled for visibility.

If there is a feature in one image, but not the other, or if the feature is more pronounced in one of
the images, we enhance the color differences. Similar to the spatial filtering, the feature detection
depends on the number of pixels per degree of visual angle (PPD), i.e., the observer’s distance to
the display and the size of the display’s pixels.

4.2.1 Feature Detection. The first step of our feature pipeline is transforming the reference and
the test image from linear RGB to the Yycxcz opponent space, as described in Section 4.1.1. Feature
detection is then performed on their achromatic (Yy) channel, in which most of the high-frequency
spatial information is contained [Mullen 1985], normalized to the [0, 1] range by addition with 16
followed by division with 100. The detection is done by convolving the achromatic images with
kernels that depend on the feature (edge or point) we want to detect as well as the number of PPD,
𝑝 . For both detectors, to obtain feature values in the [0, 1] range, we normalize the sum of the
positive kernel weights to 1 and the negative weights to −1.

FLIP detects edges in images by convolving them with the first partial derivatives of symmetric,
two-dimensional Gaussians, resembling how edge detection is done by the human visual sys-
tem [McIlhagga 2018]. Here, the width of the Gaussian partial derivatives is dependent on the
number of PPD, 𝑝 , computed in Equation 1. Given that the edge detector in the human visual system
has a width, from the highest to the lowest amplitude value, of 𝑤 = 0.082 degrees [McIlhagga
2018], the standard deviation of our digital edge detection filters (in pixels) is 𝜎 (𝑤, 𝑝) = 1

2𝑤𝑝 . The
radius of the kernels is ⌈3𝜎 (𝑤, 𝑝)⌉ pixels, similar to the radius of the kernels used in Section 4.1.1.
Performing convolutions of an image, I, with the 𝑥 and 𝑦 partial derivatives, respectively, yields a
per-pixel gradient image. The magnitude of the gradient in each pixel is then the edge feature value
and the full magnitude map is denoted ∥∇I∥.
Our point detection is done similarly, but with the second partial derivative instead of the first.

The standard deviation of the point detection filter is the same as the one used for edge detection,
meaning that it too depends on the number of PPD. The effect of this is that structures larger than
one pixel are considered to be points at a larger number of PPD, which is also what they are then
perceived as. As with the edge detection, we perform two convolutions of the image, I, in this case
with the second partial derivative in the 𝑥 and the 𝑦 directions, respectively. With the results, we
compute a per-pixel magnitude map, denoted ∥∇2I∥, where each magnitude is a point feature value.

4.2.2 Feature Metric. Both edge and point differences are noticeable as we flip between images.
Furthermore, they are independent in the sense that edges and points do not occur in the same
pixels. This is illustrated in Figure 5 where we see how the edge error is large along the edge, but
small on the pixels containing salt and pepper noise, while the opposite is true for the point error.
Based on this, we choose the feature difference, ΔEf , between pixels in the reference image, R, and
the test image, T, to be the maximum of the differences in edge and point feature values, i.e.,

ΔEf =
(
1
√
2
max

(��∥∇R∥ − ∥∇T∥
��, ��∥∇2R∥ − ∥∇2T∥

��) )𝑞f , (9)
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Fig. 6. From left to right: 1) reference image, 2) test image, including aliasing artifacts, 3) color error, ΔEc,
produced by the pipeline in Section 4.1, and 4) color error enhanced based on feature differences (Equation 10).
The heatmap we use is shown to the right, where bright yellow corresponds to maximum error and dark to
minimum error. Note that this heatmap was selected since its luminance is a linear ramp from dark to bright.
The images are have been enlarged to more clearly show the differences.

where pixel indices are omitted for brevity and 𝑞f = 1/2 is used to increase the impact of the feature
difference on the final FLIP error. With the division by

√
2, the feature error obtained in Equation 9

is in the [0, 1] range. In Figure 6, we present an example showcasing how the enhancement of color
differences, based on differences in feature content, affects the FLIP error image. By enhancing the
color errors, we obtain an error map which agrees better with the errors we perceive between the
reference and test image than the one showing only the color error, ΔEc.

4.3 Final Difference Map
With the per-pixel color and feature differences, ΔEc (Section 4.1) and ΔEf (Section 4.2), respectively,
the FLIP difference value, ΔE, per pixel, is given by

ΔE = (ΔEc)1−ΔEf . (10)

By raising the color difference to the power of one minus the feature difference, both of which are
in the [0, 1] range, a feature difference can only increase the color difference. If there are no feature
differences, the FLIP value is completely determined by the difference in color between the images.
Furthermore, if the colors in a pixel, after filtering, are identical in the reference and test image, the
error is minimal and equal to 0. Maximum error for a pixel is generated if the pixel is blue in the
filtered version of one image and green in the other, i.e., if we have maximum color difference, or if
there is a feature difference such that ΔEf = 1, which would imply that the exponent in Equation 10
is zero and, subsequently, that ΔE = 1. Finally, the model parameters 𝑞c, 𝑞f , 𝑝c, and 𝑝t, were chosen
based on visual inspection of the produced error maps for a large set of image pairs.

5 POOLING
Pooling is the process of condensing an error image down to a smaller set of values or, in the
most extreme case, to a single value. As with any irreversible compression of data, information
is inevitably lost in this process. If possible, it is thus best avoided, but in some cases, e.g., for
large scale image analysis and deep learning loss functions, a single value is often required. In this
section, we present a set of pooling methods of different granularity.
As a first step to reduce the amount of data, we create a histogram of all pixels’ FLIP error

(Equation 10). In a classic histogram, a pixel with, e.g., error 0.2 counts as much as a pixel with error
0.4, i.e., they contribute with the same amount of height to the diagram. To better convey what
error levels contribute the most to the total error in the image, we instead use a weighted histogram,
where the count in each of the histogram’s buckets is multiplied by the FLIP value in the middle
of the corresponding bucket. For easier comparison of such weighted histograms between image
pairs with different resolutions, we divide the weighted bucket count by the number of megapixels
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Fig. 7. Top row, from left to right: 1) a weighted FLIP histogram, generated using the third image on this
row, showing the weighted median, the mean, the 1st and 3rd weighted quartiles, and the minimum and the
maximum value. 2) same as to the left, except that the 𝑦-axis is in log space, resulting in the larger errors
(with low counts) becoming more pronounced, which may be beneficial in some cases. In the left diagram, it
can be seen that the area to the left of the weighted median is the same as the area to the right. 3) the path
traced test image with 32 samples per pixel (SPP). 4) the FLIP error map, which was computed against a path
traced reference image with 222 SPP. Bottom row: same as the top row, except that the test image was path
traced using 1,024 SPP. Note that the image on the bottom row has more pixels with medium to high errors
and that this is clearly visible only in the log diagram.

in the image. In our open source C++ implementation of FLIP, we generate the histograms both as
a comma separated value (CSV) file and as a Python file that generates, using pyplot, weighted
histograms like the ones shown in Figure 7. Optionally, logarithmic scale can be used on the 𝑦-axis.
The reason for having this option is that, for rendered images, there is often an abundance of
pixels with very low errors and the remaining pixel errors tend to get suppressed by those. This is
particularly noticeable in the first column of Figure 7, where the test image in the top row used 32
samples per pixel (SPP) and the test image in the bottom row used 1,024 SPP. As expected, much
of the errors were “pushed” to the left by using 1,024 SPP, but there are also more values in the
buckets with larger errors (e.g., around 0.7 on the 𝑥-axis). The reason for this is that, when using
naive path tracing, there is a 1024/32 = 32 times higher risk of rendering a firefly (a pixel with
very high intensity compared to its surrounding pixels) at 1,024 SPP than at 32 SPP. At the same
time, there is not a sufficient number of samples to average out those firefly values. The weighted
histogram in log space reveals this well.

To further compress the data, we also compute the weighted median and the arithmetic mean of
all errors. The weighted median is the median of the weighted histogram and it is located where
the area to the left in the weighted histogram is the same as the area to the right. This can be
seen to the left in Figure 7. When a single error value is to be reported, we recommend using the
weighted median due to its intuitive interpretation. An exception to this recommendation are deep
learning applications, for which the mean is preferred, as it is easier to differentiate. In addition to
the weighted median, we present the 25% and 75% weighted percentiles (first and third weighted
quartiles), the minimum value, and the maximum value. Together, these quantities can be used
to get a coarse overview of the error distribution. In Figure 8, these values are shown for a set of
rendered images with increasing number of samples per pixel, where it can be observed that the
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Fig. 8. Pooled FLIP values for the Bistro leaves images, partially shown in Figures 7 and 10. Note that the
third quartile has a local peak at 4,096 and 16,348 SPP. The reason for this is that the corresponding images
have an increased number of fireflies compared to the lower SPP images, which can be seen when zooming
in on the corresponding images in Figure 10.

third weighted quartile reveals an increased number of fireflies around 4,096 and 16,384 SPP. The
proposed pooling method is simple and has an intuitive interpretation. It might not be the preferred
option under all circumstances, however, and we leave it to the user to evaluate and choose the
option best suited for their use case.

We note that FLIP is differentiable and can be used as an objective function for, e.g., deep learning-
based image-to-image applications. Initial tests show that the mean value of the FLIP map can be
successfully used as a training loss. A thorough evaluation of this is, however, left for future work.

6 EVALUATION
In this section, we evaluate FLIP using two methods. In Section 6.1, we analyze the error maps
generated by FLIP. This is done in the form of case-by-case comparisons with other metrics for
some real-world examples. In Section 6.2, we examine how FLIP compares to other algorithms on a
larger scale by conducting a user study. In the study, the subjects are tasked with determining how
well the produced error maps correspond to their perception of the differences between alternating
reference and test images. Finally, in Section 6.3, we briefly discuss possible reasons for the outcome
of the evaluation.
In addition to several image pairs that we generated ourselves, we used the LocVis [Wolski

et al. 2018] and the CS-IQ image data bases [Larson and Chandler 2010], as well as the data bases
by Herzog et al. [2012] and Čadík et al. [2012], during the development of FLIP. A large set of
these images are renderings that exhibit common rendering artifacts including aliasing, Monte
Carlo noise, and color shifts. Additionally, we have investigated a set of natural images suffering
from various distortions such as compression and dithering artifacts, blur, and contrast changes.
All in all, we have used over 1,500 image pairs for visual inspection and looked at error maps
generated with Euclidean RGB distance, SMAPE [Vogels et al. 2018], SSIM [Wang et al. 2004],
S-CIELAB [Johnson and Fairchild 2003], HDR-VDP-2 [Mantiuk et al. 2011], LPIPS [Zhang et al.
2018], PieAPP [Prashnani et al. 2018], the CNN visibility metric [Wolski et al. 2018] (CNN, for short),
and Butteraugli [Alakuijala et al. 2017]. For visualization, some of the metrics were modified to
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generate results in [0, 1], as explained in the following paragraphs. The 1,500 image pairs, together
with the corresponding error maps, can be accessed via our research page.1

SSIM originally generates values in the range [−1, 1], where 1 indicates no error (perfect similar-
ity), 0 indicates maximum error (no similarity) in either luminance or the variance of luminance,
and the negative values can arise due to the correlation factor. To instead retrieve errors from 0
to 1, we re-map the SSIM error, 𝑠 , by 𝑠 ′ = 1 − 𝑠 , yielding error 𝑠 ′ = 0 when SSIM claims perfect
similarity and error 𝑠 ′ = 1 when it detects no similarity. In the analysis section, we use another
color map for 𝑠 ′ ∈ (1, 2] to indicate negative values, which are uninterpretable in the full SSIM
expression. For the user study, we clamp the original SSIM value, 𝑠 , to [0, 1].

PieAPP is designed to generate one value per image pair, indicating themagnitude of the perceived
error between the images. This is done via a weighted sum over per-patch scores, where patches
are of size 64 × 64 and separated by a given stride length. We modified PieAPP by setting the stride
length to 1, which results in one patch centered around each pixel, and the score for the patch is
used as the score for the pixel. Originally, the score is in an undetermined range, which we assume
to be (−∞,∞), with 0 representing no error and ±∞ representing maximum error. To map the
score, 𝑎, to [0, 1], we use the sigmoid function to compute the PieAPP per-pixel error, 𝑎′, as

𝑎′ =

����1 − 2
1 + 𝑒𝑎

���� . (11)

For Euclidean RGB distance and S-CIELAB, we identify the maximum error possible given input in
the RGB cube. In the case of Euclidean distance in RGB space, the largest error is

√
3. For S-CIELAB,

with the original L∗a∗b∗ color metric [CIE 1978], the largest error possible was found to be 259,
which is the distance between blue and green. The SMAPE value was computed per pixel. While
SMAPE is most commonly used for high-dynamic range input, it is still included for completeness.
Butteraugli has an option to produce a heatmap of the errors based on its internal per-pixel

score, which is in the [0, 1] range, with 0 indicating minimal error, and 1 indicating maximum error.
We simply change the original color map to the one we use and use the score directly. Similar
approaches were used to generate error maps for the CNN visibility metric, HDR-VDP-2, and LPIPS.

6.1 Analysis
This analysis focuses on the image pairs presented in Figure 9 and Figure 10, with the purpose of
highlighting strengths of FLIP versus the other metrics listed in the previous section. Both figures
show a set of reference and test images together with the FLIP maps and the error maps from the
other metrics. The FLIP maps were computed given 𝑝 = 67 PPD, which is the assumed viewing
condition in the evaluation.
In the first column of Figure 9, we see the Attic_Aliasing_l1_aliasing reference and test

images together with the FLIP map and the map generated with the CNN visibility metric. As the
CNN visibility metric generates the per-pixel probability that the distortion is detected while FLIP
outputs error magnitudes, a comparison of the two error maps’ magnitudes is not fair in this case.
However, we can note the fact that the CNN visibility metric’s localization, i.e., where it claims
there are visible errors, is not precise. An error seen in a few pixels is spread out over multiple
pixels in which it cannot be seen. Since the CNN visibility metric was trained on user markings,
which were often done with a coarse marker, however, this behavior is not surprising. FLIP shows
better localization in this case.
The second column shows the Flag_Aliasing_l1_aliasing reference and test images, the

FLIP map, and the LPIPS error map. Similar to the CNN visibility metric, LPIPS shows weaknesses

1Link to research page: https://research.nvidia.com/publication/2020-07_FLIP.
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Fig. 9. A collection of example images and corresponding error maps. Each column contains one reference
image, one test image, the FLIP map, and the error map produced by one of the other metrics which FLIP
is compared against. Recall that FLIP has been developed for the flip test, so instead of zooming in on the
images in the paper, we recommend that the reader looks at the images in our supplemental material at a
distance such that 𝑝 = 67 pixels per degree. Here, image pairs 1–5 are rendered, while image pairs 6–8 are
natural images. Image pair 6 is courtesy of NASA and image pair 7 of Lambert/Keystone/Getty Images.

in terms of localization. Again, FLIP is more accurate in this regard. This can be observed, e.g.,
along the cable near the center of the image or at the bottom left of the windsock itself, where
errors are indicated far from the pixels where they are actually seen. We also see that the FLIP error
map correspond better with the perceived error than the LPIPS map does, as it correctly indicates
small errors whereas LPIPS indicates large errors in multiple pixels.

An example of an error map generated with PieAPP is shown in the third column. The reference
and test images were rendered using different algorithms and the latter contains a large amount of
noise. PieAPP detects much of the perceivable noise, but not all of it. For example, it indicates a
very small error on a part of the rightmost ring, where an error is clearly visible. As seems to be
the general issue with the deep learning-based metrics we compare to in this paper, PieAPP also
exhibits problems with localization. Still, despite spreading errors too widely, we see that it does
find most of the fireflies. FLIP also finds the fireflies, but with better precision. When zooming in
on the FLIP map, one can notice dark borders around many of the fireflies. The borders are results
of the spatial filtering, where the blurred color of a firefly at some distance from it coincides, or at
least is close to, the reference color and therefore yields a small error. This is a property inherent to
the algorithm and it is the expected behavior.

In the fourth column, we show the cadik-siggraph-asia-2012-tt reference and test images,
together with the corresponding HDR-VDP-2 error. As can be seen, this metric suffers from ringing
artifacts. While it does show some sense of where the errors are located, the ringing lowers the error
map’s correspondence to the perceived error significantly. Like the CNN visibility metric, HDR-
VDP-2 produces probabilities of distortion detection and, therefore, we refrain from commenting
on the error magnitudes in relation to those of the FLIP map. In that map, however, we see that
the errors on the car are large, which agrees with the perceived error. Furthermore, we see, in the
lower right corner, that FLIP reacts reasonably to the low-amplitude noise observed there.

The Butteraugli error map, shown in the fifth column, can occasionally overreact to unnoticeable
differences, as the floor in this example illustrates. Similar to the mentioned metrics, Butteraugli
also shows some problems with localization as an error can cover many more pixels than it can be

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 15. Publication date: August 2020.



15:16 Andersson et al.

observed in. This can be seen, for example, around the legs of the chair. In the case of FLIP, we
again see better localization. Additionally, we notice how the large errors perceived on the chair’s
legs are of adequate magnitudes in the error map. The example reference and test images used here
are the Furniture3_l1_cgibr images.
The last three columns show examples of S-CIELAB, SSIM, and SMAPE and we see additional

positive effects of FLIP. First, the frequency filter version of S-CIELAB, as described by Johnson
and Fairchild [2003], shows substantial issues due to the usage of the original, band-pass version
of the achromatic CSF. With its significant modulation of low frequencies, the filter can result in
full-image blur. For the earth/moon image in Figure 9, this implies that, after filtering, the entire
reference and test image both have almost the same gray level, resulting in small errors over the
entire image. Upon close inspection, it can be seen that the error on the moon’s surface and in the
background is almost the same, despite the fact that the only visible error is on the moon’s surface.
Using the CSFs proposed in Section 4.1.1, FLIP evidently avoids this problem.
Next, we consider the SSIM error map between the images of Einstein (based on a photo by

Lambert/Keystone/Getty Images), which differ in their dither patterns, in the seventh column of
Figure 9. In this example, it is evident that SSIM does not consider viewing distance and pixel
size, as it produces large errors despite the observer not being able to see any, unless viewing the
images at an unusually large number of PPD. Furthermore, it produces a considerable amount of
uninterpretable values, as indicated by the green pixels in the error image. The PPD dependency of
FLIP helps it reduce the errors greatly, which agrees well with the perceived error at 𝑝 = 67 PPD.
Finally, in the last column, we see an example where SMAPE was used. For this image pair

(fisher.fnoise.2), SMAPE produces small errors on the beach, in thewater, and in the background,
where errors are easily observed by a viewer. On the other hand, due to SMAPE’s normalizing
denominator, it produces large errors in the darker regions of the people in the image, where
the errors, in general, are much harder to notice. FLIP solves this example better, as it generates
large errors everywhere except in the dark regions of the people. This is partly due to FLIP’s Hunt
adjustment, explained in Section 4.1.2.

In Figure 10, we showcase the different metrics’ error maps during aMonte Carlo-based rendering
of one part of the bistro scene. That is, we show error maps corresponding to test images with an
increasing number of samples per pixel (SPP). In general, and as can be seen in the test images,
the perceived error is reduced with an increased sample count. As noted in Section 5, however,
there is also a possibility that new fireflies appear as the sample count increases. Considering the
error maps, we see that each of them follows the general trend of an error decrease with larger
sample counts. We also see that many of them react to the many fireflies present in, e.g., the 4,096
SPP image. For S-CIELAB, the errors seen in the test images are underestimated because they are
much smaller than the maximum error in that metric. FLIP improved on this in Section 4.1.3 and
the benefits are evident. Similar to the previous maps shown in this section, we see that the deep
learning-based metrics show problems with localization. In the higher SPP images, we see how
also Butteraugli and SSIM sometimes spread errors too widely, particularly near fireflies. The FLIP
maps exhibit better localization in these cases. Furthermore, SSIM yields several uninterpretable
values for the low SPP images and tends to generate low errors along edges, despite the levels
of the perceived error being the same there as in nearby parts of the images, where significantly
larger errors values are generated. HDR-VDP-2 and SMAPE show the same issues as discussed
earlier, i.e., ringing in the HDR-VDP-2 maps and overestimation of errors in dark regions relative
to brighter ones in SMAPE’s case.
With Figures 9 and 10 and the discussion that followed, we have illustrated many of FLIP’s

strengths. One effect that is not handled by FLIP ismasking, i.e, where image differences are present,
but also hard to notice due to high amounts of irregularities or contrast shifts. Such masking can
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Fig. 10. Here, we show an example of the progression of a naive path tracer. In the leftmost column, we show
the same reference images in each row (generated with 222 samples per pixel), followed by test images, where
each test image has 4× more samples than the one above it. We then present the corresponding error maps,
for each test image and each metric, in the remaining columns. Note that there is a substantial amount of
firefly detection with FLIP in the images with 4,096 and 16,384 SPP (visible when zooming in).

lead to an overestimation of the metric output compared to the perceived errors. This can be seen
in Figure 11, where we have used the image pair from Peacock-02_l2_lici. Since we have not
been able to find any distance-dependent masking detection function, we leave this for future work.
While a thorough performance evaluation was not carried out in this work, we note that, with

an unoptimized GPU implementation and at 𝑝 = 67 PPD, FLIP evaluates the difference between
two 1920 × 1080 images in 180 ms on an NVIDIA RTX 2080 Ti.

6.2 User Study
Even though the visual inspection of error maps is useful, it is also desirable with a non-biased
measure on how well different error maps correspond to the perceived error during flipping. To
produce this, we devised a user study, which we describe here.
In the user study, the test subjects were presented with a series of alternating reference/test

image pairs, with a period of 0.5 s, together with corresponding per-pixel error maps from ten
metrics, which were FLIP, Butteraugli, CNN, HDR-VDP-2, LPIPS, PieAPP, Euclidean RGB distance,
S-CIELAB, SMAPE, and SSIM. All images used in the study can be found in the supplemental
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reference test FLIP

Fig. 11. A compressed photograph exemplifying FLIP’s tendency to overestimate the perceived error in the
presence of masking.

material. The subjects were tasked to grade the error maps from bad to good based on how well
they found the error maps corresponded to the differences they perceived during flipping between
the reference and test images. During the study, each image metric was graded using an integer
slider from 0 to 3, where 0 represented no correspondence between the error map and the perceived
difference and 3 represented complete agreement. The users were also asked to pay close attention
to details, i.e., if an error map showed false positives (indicating differences when there are none) or
false negatives (not indicating differences when they exist). Magnitude and localization, i.e., that the
metric response indicated the correct level and position of the perceived difference, were important
aspects of this. The order in which the image pairs were presented was randomized. This was also
the case for the order of the error maps for the different metrics. At the start of the test, each user
had to enter their display width in meters and in pixels, and a script then computed a distance
where the user was to position their head in order to observe 𝑝 = 67 pixels per degree of visual
angle, which was the value used when computing all error maps. To provide the user with a sense
of what kind of image errors could be expected throughout the study, it started with showing the
user four reference/test pairs that each exhibited different types of errors of different magnitudes.
The 21 image pairs in our user study are shown in Figure 12. The top row (11 image pairs,

R1–R11) consists of rendered images, either generated in-house or extracted from different data
bases [Čadík et al. 2012; Wolski et al. 2018]. To test whether FLIP works for natural images with
various image distortions, we included the 10 image pairs on the bottom row (N1–N10). Five of
them are from the CS-IQ data base [Larson and Chandler 2010] and three are from the LocVis data
base [Wolski et al. 2018], while two (earth/moon and Einstein) are distortions of our own. The
earth/moon test image was generated with a luminance shift on the moon’s surface and an added,
dark text on the black background, while the images of Einstein include different dither patterns.
The subjects in our user study were mainly computer graphics experts, but we also included

color scientists and computer vision researchers. Due to extraordinary circumstances, we were
unable to set up a laboratory with a controlled environment. Instead, we shared a URL that brought
users to a website where they could participate in the study. The users were asked to keep their
lighting conditions from being too bright and too dim, but no more exact instructions were given
in that regard. Furthermore, we did not impose any requirement on display calibration.

In total, 42 people participated in the user study. We present the metrics’ average scores for each
image, together with each metric’s average score over all images, as a radar diagram in Figure 13.
In the adjacent bar plot, we record the overall averages, the averages for the rendered images
(R1–R11), and the averages for the natural images (N1–N10), together with the corresponding
95% confidence intervals. The overall averages indicate that the maps generated by FLIP, which
achieved an average score of 2.1, correspond significantly better to the perceived error than any of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 15. Publication date: August 2020.



FLIP: A Difference Evaluator for Alternating Images 15:19

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

r e
fe
re
nc
e

te
st

r e
fe
re
nc
e

te
st

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Fig. 12. The image pairs used in our user study. The top row shows rendered images, while the bottom row
shows natural images with various distortions. All images, together with the error maps generated by the
different metrics used in the study, are included in our supplemental material. N4 is courtesy of NASA and
N5 is based on a photo by Lambert/Keystone/Getty Images.
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Fig. 13. Left: the results from our user study with per-image and per-metric averages. The rendered images
(Rx) and the natural images (Nx) are the ones shown in Figure 12. Right: averages and 95% confidence
intervals over all images (gray), only rendered images (orange), and only natural images (blue), respectively,
where the 𝑥-axis is the score, from 0 (minimum) to 3 (maximum), in the user study.

the other metrics in the study. Furthermore, we note that there does not seem to be a distinct second
place metric, as the CNN visibility metric, SSIM, LPIPS, SMAPE, and, surprisingly, the Euclidean
RGB distance, all have scores close to 1.1, on average. Figure 13 shows that FLIP scored the best, or
shared best, for 16 out of the 21 image pairs. In the bar plot, we see that FLIP performs well both
for rendered and natural images. We also see that, in general, most metrics achieved best results on
the rendered images.

FLIP’s worst score, on average, was given for image pairR2, which portrays a bathroom rendered
with path tracing. This case is similar to the examples in Figure 10, where we showed that FLIP
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behaves well for such images when seen together with error maps from images rendered with
other SPP. The result for image pair R2 likely follows from the fact that the subjects were not
shown such a range of images during the study and that the FLIP values for this pair are small
compared to some of the other metrics’, such as SSIM, which scored the best for that pair. SSIM
also outperformed FLIP and the other metrics for image pair N10, which could be due to its error
map showing more structure than most of the other ones. However, since the distortion is created
by adding high-amplitude, white Gaussian noise over the entire reference image, structure in the
error map is not to be expected.

For image pairsR9 andN6, all metrics received low scores on average. Image pairR9 is a difficult
case in the sense that it is hard to discern exactly how the errors are manifested. Consequently, it
is difficult to assess the error maps themselves, which could have caused the low scores. Viewed
on a calibrated display, at 𝑝 = 67 PPD, there is little to no visible distortion between the images in
pair N6, which was also indicated by the FLIP map, along with the Euclidean RGB and S-CIELAB
error maps (see the supplemental material). Despite this, the corresponding scores are relatively
low. This could stem from the relaxation of the calibrated display requirement. On an uncalibrated
display, errors could be perceived as larger or smaller during flipping than on a calibrated display.
In addition, the error maps themselves could indicate too large errors in these cases, as they could
become brighter in general. We note that FLIP scored lower than the Euclidean RGB distance and
S-CIELAB for this pair, which is reasonable as the FLIP values are sufficiently large to be seen in
the error image, whereas the other two metrics generate seemingly black images.

6.3 Discussion
With the results in Sections 6.1 and 6.2, we have shown that FLIP, in general, generates error maps
that correspond better with the perceived errors between reference and test images than the ones
generated by the other metrics. In this section, we summarize our views on why this is so. The
most significant reason is that the competing algorithms tend to generate several false positives,
either in terms of poor localization or overestimation of imperceivable errors. One general cause
for this is that neither of them were designed for flipping images back and forth. However, many of
the other metrics’ shortcomings are prevalent also under other viewing protocols.
We see how the deep learning-based metrics, i.e., LPIPS, PieAPP, and CNN, show issues with

localization. This likely stems from the fact that neither of them was trained with detailed local-
ization as a target. Both LPIPS and PieAPP were trained to generate a single value per image pair,
without any constraints on the full error map. CNN does aim for a per-pixel visibility map, but
it was trained with coarse user markings, which likely leads to worse localization than if user
markings were more exact. With more accurate ground truth error maps, deep learning-based
metrics could potentially be more precise. However, such ground truth error maps are difficult to
obtain and until they are available in large quantities, handcrafted metrics such as FLIP will be
competitive in terms of localization.
To achieve proper localization, care must be taken also for handcrafted metrics. We see severe

ringing artifacts, and thus unsatisfactory localization, in the error maps produced by HDR-VDP-2,
which likely arise due to its multi-scale approach. Even though FLIP does not incorporate the concept
of multi-scale, it too would show some ringing artifacts had we not done careful approximations
of the contrast sensitivity functions (see Section 4.1.1). Had we adopted the original CSFs used in
S-CIELAB directly, FLIP would exhibit similar issues as S-CIELAB in terms of full image blur due
to excessive modulation of low frequencies, as mentioned in Section 6.1. The low user study scores
for S-CIELAB was likely due to it generally producing low values, and thus showing poor accuracy
in terms of error magnitude, following the normalization with its maximum possible error. While
this could have been improved with an error redistribution approach similar to the one described
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in Section 4.1.3, the fact that its opponent color space and CSFs lead to significant color bleeding,
together with the lack of a feature enhancement, imply that the S-CIELAB metric would still not
perform on par with FLIP.
As our work considers only low-dynamic range images, with pixel values in the [0, 1] range,

SMAPE will naturally tend to generate large errors in dark regions, as mentioned in Section 6.1.
This could possibly be helped by performing some form of pixel value scaling before computing the
SMAPE value. However, even if SMAPE would treat darker regions better, it is still a simple metric
which does not consider any perceptual aspects and can therefore be expected to, for example,
overestimate errors at a larger number of pixels per degree.
Nilsson and Akenine-Möller [2020] provide a thorough discussion about SSIM and the error

maps it produces. Based on the shortcomings of SSIM explained there, including the generation
of uninterpretable values, the poor handling of color, and its absence of any pixel per degree
dependency, it is expected that FLIP, which is designed to better handle these aspects, shows
superior results in our evaluation.

7 CONCLUSIONS AND FUTURE WORK
By detailed visual inspection of more than 1,500 image pairs under a viewing protocol commonly
adopted by graphics researchers and practitioners and by carefully lending principles from per-
ceptual research, we have aimed to create a novel approach to image quality assessment with a
particular focus on rendering.

The result is FLIP, which targets rendered images and how rendering researchers often compare
images manually by flipping, or alternating, between two images. With the FLIP output at hand, a
developer can make justified trade-offs between design alternatives. We set up a user study with
over 40 test subjects, but, due to extraordinary circumstances, we were not able to use a laboratory
setting for our tests. This meant that the lighting conditions and display calibrations were different
between most users. Despite this, the results of our user study show that FLIP performs substantially
better, on average, compared to many existing image metrics, including state-of-the-art techniques.
Furthermore, the results indicate that this is not only true for rendered images, but also for natural
images with various distortions. To simplify further use of FLIP, we will release our source code. It
is our hope that FLIP can be an important tool for rendering researchers.
There are several avenues for future work. The most important ones are devising a distance-

dependentmasking function, developing an evenmore reliable color space for large color differences,
evaluating FLIP as an objective function in deep learning applications, and augmenting the evaluator
to the spatiotemporal domain.
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How to write FLIP
In LATEX, you can add the following three lines to the preamble of your main .tex file:

\usepackage{mathtools}
\usepackage{xspace}
\newcommand{\FLIP}{\protect\reflectbox{F}LIP\xspace}

Then you canwrite \FLIP in your text, which will produce “ FLIP.” In HTML, you canwrite &#xA7FB;
to get a flipped F. The UTF-8 (hex) encoding is 0xEA 0x9F 0xBB (0xEA9FBB), and the UTF-16 (hex)
encoding is 0xA7FB.
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A PSEUDOCODE
Below, .ˆ is an element-wise power function, whereas ˆ is a scalar power function, and ./ represents
element-wise division. The per-pixel Euclidean norm of the image x is denoted ||x||.

1 FLIP(ref , test , pixelsPerDegree)
2 ref = TransformToOpponentSpace(ref)
3 test = TransformToOpponentSpace(test)
4
5 #### Color pipeline ####
6 # Spatial filtering
7 filteredRef = clamp(ConvolveWithCSFs(ref , pixelsPerDegree))
8 filteredTest = clamp(ConvolveWithCSFs(test , pixelsPerDegree))
9 # Perceptually uniform color space
10 preprocessedRef = HuntAdjustment(TransformToCIELAB(filteredRef))
11 preprocessedTest = HuntAdjustment(TransformToCIELAB(filteredTest))
12 # Color metric
13 deltaEhyab = HyAB(preprocessedRef , preprocessedTest)
14 cmax = (HyAB(HuntAdjustment(labGreen), HuntAdjustment(labBlue))) ^ 𝑞c
15 deltaEc = RedistributeErrors(deltaEhyab .^ 𝑞c, cmax)
16
17 #### Feature pipeline ####
18 # Edge and point detection
19 refY = extractAndNormalizeAchromaticComponent(ref)
20 testY = extractAndNormalizeAchromaticComponent(test)
21 edgesReference = ConvolveWithFirstGaussianDerivative(refY , pixelsPerDegree)
22 pointsReference = ConvolveWithSecondGaussianDerivative(refY , pixelsPerDegree)
23 edgesTest = ConvolveWithFirstGaussianDerivative(testY , pixelsPerDegree)
24 pointsTest = ConvolveWithSecondGaussianDerivative(testY , pixelsPerDegree)
25 # Feature metric
26 deltaEf = (max(abs(|| edgesReference || - || edgesTest ||),
27 abs(|| pointsReference || - || pointsTest ||)) ./ sqrt (2)) .^ 𝑞f
28
29 ### Final error ###
30 deltaE = deltaEc .^ (1 - deltaEf)
31 return deltaE
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